

National Accreditation Board for Testing and Calibration Laboratories (NABL), India NABL House, Plot no. 45, Sector -44, Gurugram-122002, Haryana, India

Proficiency Testing (PT) – An Assessment Technique

Enhancing Public Health and Sustainability:

NABL's Initiatives for Clean Water, Medical Testing, and Soil Health in India

Introduction

Proficiency testing (PT) is widely recognized as an essential tool for demonstrating the competence of conformity assessment bodies (CABs). It is an external and independent assessment of a CAB's capability to conduct a specific test or measurement.

National Accreditation Board for Testing and Calibration Laboratories (NABL) in India, has introduced three schemes based on 100% PT participation for the scope. These schemes are focused on three critical domains: Clean water, Medical testing, and Soil health. Schemes are based on achieving proficiency in all the parameters to ensure standardized testing, enhance laboratory competence, and safeguard essential resources.

Access to clean drinking water, high-quality medical testing, and fertile soil is fundamental for public health and sustainable development, and NABL's initiatives in these areas aim to uphold these vital necessities.

Scope for recognition

S. No	Discipline – Group – Sub Group	Test Parameter	Range	Measurement Technique	CRM / RM
1	Chemical – Water –	pH	2 to 12	pH Meter	Buffer pH 4,7
	Drinking Water				and 10
2	Chemical – Water –	Turbidity	0.5 NTU to	Turbidity Meter	Turbidity
	Drinking Water		100 NTU		Standard
3	Chemical – Water –	Total	10 mg/L to	TDS Meter	KCL
	Drinking Water	Dissolved Solids	10000 mg/L		
4	Chemical – Water –	Chloride (as	10 mg/L to	Titration	Sodium
	Drinking Water	CI)	5000 mg/L		Chloride
5	Chemical – Water –	Total	10 mg/L to	Titration	Calcium
	Drinking Water	Hardness (as	5000 mg/L		standard
		CaCO ₃)			
6	Chemical – Water –	Total Alkalinity	5 mg/L to	Titration	Sodium
	Drinking Water	(as CaCO ₃)	2000 mg/L		Carbonate
7	Chemical – Water –	Calcium (as	5 mg/L to	Titration	Calcium
	Drinking Water	Ca)	2000 mg/L		Standard
8	Chemical – Water –	Magnesium	5 mg/L to	Calculation	-
	Drinking Water	(as Mg)	1000 mg/L		
9	Chemical – Water –	Colour	1 HU to 100	Visual	Potassium
	Drinking Water		HU	comparison	chloroplatinate
10	Chemical – Water –	Odour	Qualitative	Observation	-
	Drinking Water				
11	Chemical – Water –	Taste	Qualitative	Observation	-
	Drinking Water				

Scope for recognition

S. No	Discipline – Group – Sub Group	Test Parameter	Range	Test Method(s)
1	CHEMICAL – Soil & Rock – Agriculture Soil	рН	1 to 14	Soil Water Suspension method/Woodruff's Method/Shoe Maker Method/IS 2720 (Part 26)
2	CHEMICAL – Soil & Rock – Agriculture Soil	Electrical Conductivity	0.1dS/m to 10 dS/m	IS 14767
3	CHEMICAL – Soil & Rock – Agriculture Soil	Organic Carbon	0.1% to 5%	Loss of Weight on Ignition method/Volumetric Method/ Colorimetric Method
4	CHEMICAL – Soil & Rock – Agriculture Soil	Available Nitrogen	0.1kg/ha to 1000 kg/ha	Subbiah and Asija method
5	CHEMICAL – Soil & Rock – Agriculture Soil	Available Phosphor	0.1kg/ha to 1000 kg/ha	Olsen et al./Bray and Kurtz method/ICP
6	CHEMICAL – Soil & Rock – Agriculture Soil	Available Potassium	0.1kg/ha to 1000 kg/ha	Toth and Prince method/ICP
7	CHEMICAL – Soil & Rock – Agriculture Soil	Available Sulphur	0.1mg/kg to 200 mg/Kg	Chesnin and Yien method, 1950 / ICP
8	CHEMICAL – Soil & Rock – Agriculture Soil	Zinc	0.1mg/kg to 20 mg/kg	Lindsay and Norvell, AAS /ICP
9	CHEMICAL – Soil & Rock – Agriculture Soil	Iron	0.1mg/kg to 20 mg/kg	Lindsay and Norvell AAS/ICP
10	CHEMICAL – Soil & Rock – Agriculture Soil	Copper	0.1mg/kg to 20 mg/kg	Lindsay and Norvell AAS/ICP
11	CHEMICAL – Soil & Rock – Agriculture Soil	Manganese	0.1mg/kg to 20 mg/kg	Lindsay and Norvell, AAS/ICP
12	CHEMICAL – Soil & Rock – Agriculture Soil	Boron	0.1mg/kg to 20 mg/kg	Lindsay and Norvell, AAS/ICP

Scope for recognition

1. HIV-1 antibodies

2.	Clinical	Biochemistry	
----	----------	--------------	--

Sodium	Chloride	Potassium	Magnesium	Glucose	Amylase	Lipase	Calcium
D. Bilirubin		Glycated Hb (HbA1C)		Inorganic Phosphorus		Lactic	Acid
						Dehydrogenase	
				(LDH)			
Creatine		Lipid Profile	Cholesterol,	High	Density	Gamma	Glutamyl
Phosphokinase		Triglyceride		Lipoprotein Cholesterol		Transferase	
(CPK/CK)				(HDL)		(GGT)	
Low	Density	Renal Func	tion Tests	Liver Functi	on Tests	(Total	Bilirubin,
Lipoprotein		(Urea/Blood	Urea	Alanine Aminotransferase (ALT/SGPT)			
Cholesterol (LDL)		Nitrogen, Cre	atinine, Uric	Aspartate Aminotransferase (AST/SGOT),			
		acid)		Alkaline Phosphatase (ALP), Albumin, Tota			
				Protein)			

3. Haematology

Haemogram/ CBC (Haemoglobin, Total Leucocyte Count (TLC), Differential Leucocyte Count (DLC – Lymphocyte, Monocyte, Basophils, Eosinophils, Neutrophils), Platelet count, Red Blood Cell Count (RBC) Count, Packed Cell Volume (PCV)/ Hematocrit (HCT), Mean Corpuscular Volume (MCV), Mean Corpuscular Hemoglobin (MCH), Mean Corpuscular Haemoglobin Concentration (MCHC)

4. Clinical Pathology (Urine Routine Examination)

Independent Quality Assurance

NABL has launched scheme to sensitize the Government Drinking Water Testing Laboratories at Block / Sub Divisional Level performing basic water quality testing to ensure the availability of standard water quality testing laboratories, for people living in rural, urban & peri urban areas.

This scheme is based on satisfactory proficiency testing (PT) performance and valid for a cycle of three years. This is applicable only for the critical tests specified for water and will be continued on renewal basis after every three years.

The laboratory shall continue participation for its scope in PT programs during recognition period (minimum 1 PT program per year covering the entire scope).

Ensuring Clean Drinking Water

Access to clean drinking water is vital for public health. Contaminated water can lead to severe waterborne diseases. NABL's scheme enhances the availability of standardized water quality testing facilities, ensuring safe drinking water through rigorous proficiency testing in all parameters.

Independent Quality Assurance for Soil Testing

NABL has launched scheme to sensitize the Soil Testing Laboratories performing basic testing to ensure the quality of soil for the majority of citizens especially those residing in villages and small towns.

This scheme is based on satisfactory proficiency testing (PT) performance and valid for a cycle of three years, which will further be continued on renewal basis after every three years.

The purpose of this scheme is to ensure the availability of standard soil quality testing laboratories and the improvement of soil health..

Supporting Sustainable Agriculture

Soil, as a vital resource, underpins agricultural sustainability, environmental protection and food security. The availability of standardized soil quality testing laboratories and the assurance of accurate testing results, contribute significantly to achieve these objectives. NABL's initiatives align with India's commitment to sustainable agriculture and a healthier environment.

[Protein	Glucose	pН	Leukocytes Blood (Haemoglobin)		Specific Gravity			
	Ketones	Bilirubin	Nitrite			Urobilinogen			
5.	Infectious Se	rology/Immunolog	gy (Rapid te	sts)					
	Rheumatoid	C-Reactive	Anti HCV/	Typhoid	WIDAL for	Antistreptolysin O			
	(RA)Factor	Protein (CRP)	HCV Ab	(IgG / IgM)	Typhoid	(ASO)			
	Hepatitis B	epatitis B Surface Antigen HIV Antigen + HIV Ab		Syphilis Ser	erology (Rapid Plasma				
	(HBsAg)				Reagin),	n), VDRL, Treponema			
					pallidum hemagglutination assay (TPHA)				

Accessible Entry Point

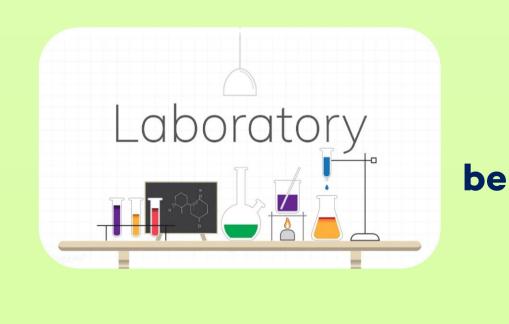
The NABL Medical (Entry Level) Testing Laboratories {NABL M(EL)T Lab} Program is an entry level program for medical laboratory under which laboratory shall be recognized for basic routine tests based on the satisfactory proficiency testing (PT) performance. it empowers laboratories to establish credibility within their local communities.

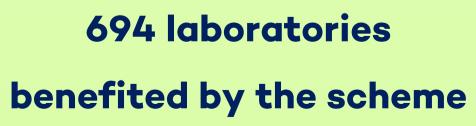
This scheme is valid for one cycle of three years. The laboratory shall continue participation for its scope in PT programs during recognition period (minimum 1 PT program per year).

Local Community Impact

The NABL M(EL)T Lab scheme stands as a commendable initiative by NABL, striving to elevate the quality of medical testing in India. This program equips laboratories with the tools to improve the standard of healthcare sector at the grassroot level and strengthens patient's confidence.

This scheme ensure access to clean drinking water in India, thus contributing quality in health sector.




704 laboratories

benefited by the scheme

It's in the budding state, around 2000 soil

Conclusion

NABL's proficiency testing based schemes for clean water, soil quality, and medical testing collectively contribute to achieve Sustainable Development Goals, particularly SDG 6 (Clean Water and Sanitation), SDG 15 (Life on Land), and SDG 3 (Good Health and Well-being). These efforts ensure quality testing and ultimately promotes public health and the sustainable development of the country.

10th Eurachem Workshop on Proficiency Testing in Analytical Chemistry, Microbiology and Laboratory Medicine (Windsor-U.K) -25th to 28th September 2023