

(K)ILO project

Proficiency tests for students

Presented By: Kees van Putten

Senior Scientist, Trilogy

PRESENTATION CONTENT:

- General
- Challenges
- Results
- Conclusions
- Summary
- Winners
- Questions

GENERAL INFORMATION Trilogy:

- Trilogy United States formed in 1999 and has since grown to locations throughout the world.
- Proficiency test organizer
- Quantitative and qualitative proficiency tests
- Participation is on an anonymous basis
- External experts
- Reference material manufacturer (Food/Feed)
- Independence
- Laboratory activities

KILO project ?

KILO project: Metals

GENERAL INFORMATION KILO project

KILO project: Metals

A foundation of enthusiastic teachers from laboratory education, both MBO and HBO, supplemented by representatives from the business community and professional organizations, annually organize the so-called "(K)ILO school project" and a concluding symposium for the students.

GENERAL INFORMATION KILO project

The (K)ILO school project (Quality in Laboratory Education) are laboratoryevaluating inter-laboratory tests (proficiency tests) in the area of:

- Anions
- Clinical
- Gas chromatography
- > Metals
- Microbiology
- Pharmaceutical

GENERAL INFORMATION KILO project:

In 2023, Trilogy Europe contributed to the KILO project 'Metals'. It supplied the raw material, processed it, and later assessed the performance of the participating students from the different school laboratories in the Netherlands and give a presentation."

KILO project - Metals !

Minerals, trace elements and heavy metals Bilateral proficiency test 2022

Premix

Product Number: BPT-MIN2022-KILO Batch Number: TE22-C0137 Date of Production: November 2022 Remarks: Store at 2-8°C

Students' challenges

Premix – [Fe] [Cu] [Mg] [Zn]

- Purpose and Requirements
- Literature study
- Grinding / dividing
- Preparation procedure sample
- Calibration strategy
- Measure technique
- Results
- Measure report
- Symposium
 - Poster
 - Defence results
 - Award ceremony

Methods

Trilogy

- Feed premix (BPT-MIN2022-KILO)
- mixture of vitamins, minerals, trace elements and other feed additives that are incorporated mostly at levels between 0,2 and 0,5% in the compound feed
- Not for individuals commercially available

Students

- Analyse four parameters (Cu, Fe, Mg and Zn)
- Own developed preparation and calibration strategy
- AAS or ICP technique
- No reference for practicing and knowledge

Some Figures

- KILO project 24 years
- Sample dispatched to 10 lab schools
- 7 lab schools submitted
- ➢ 11 groups
- 44 results (Fe, Cu, Mg, Zn)
- ➢ 10x AAS

Statistics: **Z-Score**

The Z-score is used to compare the results obtained by different laboratories. Z-score is a numerical measure that indicates how many standard deviations a laboratory result deviates from the average

$$Z_i = \frac{x_i - X_{mean}}{s}$$
 $Z_i = \frac{x_i - Xav}{SDPA}$

Catisfactory
no signal)Questionable
(warning signal)Un
(actionable)Z |
$$\leq 2$$
2 < |Z| < 3|Z|

Results

Parameter	Unit	Assigned value Trilogy*	Students concensus value		
Iron [Fe]	mg/kg	12625	4649		
Copper [Cu]	mg/kg	1268	513		
Magnesium [Mg]	mg/kg	11700	4645		
Zinc [Zn]	mg/kg	7131	922		

*Assigned values are from a regular previous Trilogy proficiency test

What's happening?

KILO BARNUS.W

Example Premix – Zinc [Zn]

School	[Zn]	Consensus	AV+SDPA	Overall	PREMIX	Satisfactory	Questionable	Unsatisfactory	
Lab nr	mg/kg	Z _{Premix}	Z _{Premix}	Statistics	[Zn]				
111	1260,09 ‡	5,3	1,9	x	922,3	Z ≤ 2	2 < Z <3	Z ≥ 3	
112	5,760	-0,5	-3,3	Х	7131	AV - Assigned value			
113	0,738	-0,5	-3,3	Ux	1612				
114	2680,0	0,9	-2,1	Uxrel	174,8 %	SDPA = Standard deviation for proficiency assessment			
115	0,360	-0,5	-3,3	S	1934				
116	0,686	-0,5	-3,3	SDPA	2139	1 = outlier			
117	7461,094‡	3,4	0,2	R	5416				
118	30,270	-0,5	-3,3	Rrel	76,0 %				
119	1,660	-0,5	-3,3	n	9*				
120	66,950	-0,4	-3,3	* # without outliers					
121	5514	2,4	-0,8						
AV	7131	XXX	0.0						

Results (Visual)

Premix Results

DDOI ah Dius

Premix Results

PROLab Plus

Results

- Eleven groups of students from different laboratory schools reported their results
- Large differences in Z-scores between Consensus values and Assigned Value/SDPA
- > Differences due to two groups of results (high and low concentration).

KILO project: Metals

> Remarkable:

Two laboratory groups are outliers in example of zinc [Zn] in whole dataset but have good Z-score in the Assigned Value +SDPA approach.

- Consensus method that is assessed as satisfactory is between the range 72%-100%
- > Assigned Value +SDPA is assessed as satisfactory is between the range 27%-36%
- Z-scores based on consensus are in this KILO project not suitable, because the real assigned value from earlier PT is almost 8 times higher.

Results

Plausible causes of low concentration

- Not grinding
- ➢ Weigh in too low
- Short destruction time
- Factor faults

- > Different days between measuring calibration and sample
- > No control if AAS was in specs

Conclusion

The students' PT results clearly show a significant difference in overall performance, Zscores and number of outliers, when the statistical approach depends on the assigned value (derived from formulation or from consensus) and the SDPA (fixed or derived from algorithm A).

Differences occurs due to preparation and calibration strategies, available AAS and ICP equipment and time span of execution.

The (K)ILO project is a valuable instrument of learning and knowledge for future laboratory staff for understanding laboratory activities and their impact on PT results.

Conclusion

Additional remark:

Students' learn a lot from every step in this KILO project.

The closing symposium was a great event with laboratory schools from the Netherlands

First prize

Oorkonde

Stichting KILO en Trilogy verlenen

Celina Poelman en Nina Kuiper

van

Noorderpoort

De eerste Prijs in de categorie

Metalen/Mineralen 2023

Namens het bestuur KILO

Freerk Dousma

mation regarding any lytical services, products, or

> Laboratorium **waliteit** in

Namens het

bestuur KILO

Freerk Dousma

KILO Oorkonde

Stichting KILO en Trilogy verlenen

Robin van Leeuwen, Pascal Steen, Yvette van de Borg en Julian Stoffers van

Noorderpoort

De tweede Prijs in de categorie

Metalen/Mineralen 2023

Namens Trilogy

Kees van Putten

Second prize

ANALYTICAL SOLUTIONS SOLVING ANALYTICAL CHALLENGES // trilogylab.com

Summary

- Premix for feed (Trilogy)
- Assigned values:
 - Iron [Fe] = 12625 mg/kg
 - Copper [Cu] =1268 mg/kg
 - Magnesium [Mg] =11700 mg/kg
 - Zinc [Zn] =7131 mg/kg
- Large differences in Z-scores Consensus versus Assigned Value +SDPAZscores based on Consensus: results in KILO project not suitable
- Method Assigned Value +SDPA: realistic display performance
- Results Sd, RSD, BI, U not included

An international (K)ILO project could create more awareness under (future) laboratory staff of the importance of proficiency tests and quality.

Contact

For information regarding any analytical services, products, or proficiency programs, we encourage you to contact us directly or speak with your sales representative.

Kees van Putten

Senior Scientist, Trilogy