## Beyond the dot-and-bar plot: Graphical methods for interlaboratory data analysis

S Ellison

LGC Teddington

Why use graphical methods?

## Why use graphical methods?



## Why use graphical methods?

| Institute | $x / \mu \mathrm{mol} \mathrm{kg}^{-1}$ | $u / \mu \mathrm{mol} \mathrm{kg}^{-1}$ |
| :--- | ---: | ---: |
| Lab01 | 5.681 | 0.029 |
| Lab02 | 2.130 | 0.110 |
| Lab03 | 5.190 | 0.080 |
| Lab04 | 5.590 | 0.100 |
| Lab05 | 5.290 | 0.050 |
| Lab06 | 5.150 | 0.100 |
| Lab07 | 5.870 | 0.160 |
| Lab08 | 5.310 | 0.065 |
| Lab09 | 5.430 | 0.100 |
| Lab10 | 5.397 | 0.028 |
| Lab11 | 5.430 | 0.065 |
| Lab12 | 5.300 | 0.110 |
| Lab13 | 6.400 | 0.190 |
| Lab14 | 6.150 | 0.120 |

## CCQM-K13 <br> Cadmium in sediment

# The purpose of visualisation is insight, not pictures 

\author{

- Ben A Shneiderman
}

The dot-and-bar plot

## The dot-and-bar plot



Conductivity results from CCQM-P22, on conductivity of standard buffer solutions.

Error bars show expanded uncertainties at $k=2$.

Inference from dot and bar plots
i) Interpreting overlap


All bars at 95\% confidence
a) Both points within others' interval;
b) One point within another's interval:
Never significant at 95\% level
c) Partial overlap

No simple interpretation
d) $95 \%$ bars in contact Significant at c. 99\% level

Inference from dot and bar plots ii) Overlap and significance
0.33

$$
\begin{gathered}
0.58 \\
u_{1} / u_{2}
\end{gathered}
$$

$$
1.00
$$

## All pairs show significant difference at exactly 95\% confidence

## Inference from dot and bar plots iii) Multiple comparisons



# Dot-and-bar plots summarise well <br> but are <br> easy to misinterpret 



## Other graphical tools

1. With a reliable reference value

## Example data set: CCQM K13 Cadmium in a sediment

| Institute | $x / \mu \mathrm{mol} \mathrm{kg}^{-1}$ | $u / \mu \mathrm{mol} \mathrm{kg}^{-1}$ |
| :--- | ---: | ---: |
| Lab01 | 5.681 | 0.029 |
| Lab02 | 2.130 | 0.110 |
| Lab03 | 5.190 | 0.080 |
| Lab04 | 5.590 | 0.100 |
| Lab05 | 5.290 | 0.050 |
| Lab06 | 5.150 | 0.100 |
| Lab07 | 5.870 | 0.160 |
| Lab08 | 5.310 | 0.065 |
| Lab09 | 5.430 | 0.100 |
| Lab10 | 5.397 | 0.028 |
| Lab11 | 5.430 | 0.065 |
| Lab12 | 5.300 | 0.110 |
| Lab13 | 6.400 | 0.190 |
| Lab14 | 6.150 | 0.120 |



# Separating value and uncertainty <br> - a common theme 

Duewer concordance/precision


Naji 2 plot


## Additional graphical tools

2. Without a reliable reference value

# Pairwise comparisons don't need a reference value 

## "Consistency plots" <br> - a pairwise summary

1. Calculate $z_{i j}$ for pairwise differences

$$
z_{i j}=\frac{\left|x_{i}-x_{j}\right|}{u\left(x_{i}-x_{j}\right)}
$$

2. Determine probability ( $z-$ or $t$-test)
3. Adjust for multiple comparisons
4. Plot as pairwise display

## "Consistency plots" <br> - interpretation




## "Consistency plots" <br> - interpretation




Extreme outlier

## "Consistency plots" <br> - interpretation




## "Consistency plots" <br> - interpretation




## "Consistency plots" - Pros and cons

- Pro
- Not reliant on a particular estimator
- High information content
- Unambiguous interpretation
- Adjusted p-values correct for implicit multiple comparisons
- Relatively easy to explain


## - Con

- Adjustment method is a choice
- Strong adjustment reduces power

- Not a ‘summary’


## A pairwise summary indicator: Median scaled difference

$$
\mathrm{MSD}_{i}=\operatorname{med}_{j, i \neq j}\left(\frac{\left|x_{i}-x_{j}\right|}{u\left(x_{i}-x_{j}\right)}\right)
$$


$\left(x_{i}-x_{j}\right) / u_{\mathrm{c}}$

$\operatorname{abs}\left(x_{i}-x_{j}\right) / u_{c}$


## MSD example: <br> CCQM-P22 - Non-IID bootstrap quantiles




## SUMMARY



There's more to
interlab graphics than
-

 dot-and-bar plots


## References



Ellison, S.L.R. Consistency plots: a simple graphical tool for investigating agreement in key comparisons.
Accred Qual Assur 27, 341-348 (2022). https://doi.org/10.1007/s00769-022-01520-z


Ellison, S.L.R. An outlier-resistant indicator of anomalies among inter-laboratory comparison data with associated uncertainty
Metrologia 55840 (2018) https://orcid.org/0000-0002-3008-6656

## References



Duewer D. L. , Kline M.C., Sharpless K.E., Brown Thomas J., and Gary K. T. Micronutrients Measurement Quality Assurance Program: Helping participants use interlaboratory comparison exercise results to improve their long-term measurement performance.
Anal. Chem. 71, 1870-1878 (1999) https://doi.org/10.1021/ac981074k


Cordeiro F., Emons H. and Robouch P. Is the z score sufficient to assess participants' performance in proficiency testing? The hidden corrective action.
Accred Qual Assur 27, 145-153 (2022). https://doi.org/10.1007/s00769-022-01496-w

## Comparing adjustment methods

Holm


Preserves family-wise error rate $\alpha$

Benjamin-Hochberg


Controls false discovery rate

## Pairwise overlap

## - Plot of mutual distribution

 overlap (Following Cofino/Quasimeme*)
## *See, for example:

Burrell S, Crum S, Foley B, Turner AD (2016), Proficienc testing of laboratories for paralytic shellfish poisoning toxins in shellfish by QUASIMEME: A review,
Trends in Analytical Chemistry, 75, 10-23, https://doi.org/10.1016/j.trac.2015.09.004.



