Approaches for assessing lab performance from nonbinary qualitative PT data

Eurachem PT 2023 Windsor, UK 28 September 2023

Steffen Uhlig & Bertrand Colson

About QuoData

Berlin and Dresden (Germany)

Team of mathematicians, physicists, biologists, biotechnologists, bioinformaticians, data scientists, computer scientists, software engineers etc.

Developer and operator of web portal for proficiency testing Licenses PROLAB PT provider

Design and evaluation of validation studies for CEN/ISO standards, official methods, test kits and in-house methods

Ë

Statistical QA helpdesks (e.g. for German Federal Office of Consumer Protection and Food Safety and for US FDA)

Contributions to numerous ISO standards and CODEX guidelines on validation, measurement uncertainty, acceptance sampling and proficiency testing

 \bigcirc

Introduction Types of qualitative data

- Binary data
 - Presence/absence of a pathogen
 Presence = 1, absence = 0
 - Identification of bacterial species
 Correct identification = 1, incorrect identification = 0
- Ordinal data
 - Wine qualityOrdinal scale from 1 (worst) to 10 (best)
- Nominal data
 - Ethnicity
 - Blood type: A, B, AB, O

Evaluation of binary proficiency test data L-score

- Labs perform a certain number of tasks with positive or negative outcome
- Basic idea for a statistical model of the success probability for Lab *i* and Task *j*:

$$Y_{ij} = \ln\left(\frac{p_{ij}}{1-p_{ij}}\right) = C_i - D_j$$
 where

 Y_{ij} represents the Logit of the probability of success

- C_i denotes the Competence of Lab i
- D_j denotes the Level of difficulty of Task j

	Laboratories																														
Sample	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
HPB 1	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				+	+	+	+	+	+	+	+
HPB 2	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1			+	+	+	+	-	+	+	+
HPB 3	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-]			+	+	+	+	+	+	+	+
HPB 4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Z	Z	N	+	+	+	+	-	-	+	-
HPB 5	-	+	-	+	-	+	+	-	+	+	+	-	-	+	-	-	+	+	+	+) res) res) res	+	-	+	+	+	+	+	+
HPB 6	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	ült	Sult	sult	+	+	+	+	+	+	+	+
HPB 7	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+				+	+	+	+	+	-	+	-
HPB 8	+	+	-	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+				+	-	+	+	+	-	+	+
HPB 9	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+				+	-	-	+	+	+	+	-

Example in PROLab – Legionella in drinking water Data overview in PROLab

	Computation of L Scores for qualitative data											
	Computation											
0	Original data Excluded data Results across tasks Task-speci											
:	Sample 🗸	Measurand 🗸	Laboratory 🗸	Success / Failure 🗸								
	PT2015-4	LEGIO	30	1								
	PT2015-4	LEGIO	29	1								
	PT2015-4	LEGIO	26	1								
	PT2015-4	LEGIO	25	1								
	PT2015-4	LEGIO	23	0								
	PT2015-4	LEGIO	22	1								
	PT2015-4	LEGIO	14	1								
	PT2015-4	LEGIO	11	1								
	PT2015-4	LEGIO	9	0								
	PT2015-4	LEGIO	7	1								
	PT2015-4	LEGIO	6	1								
	PT2015-4	LEGIO	5	1								
	PT2015-4	LEGIO	3	1								
	PT2015-4	LEGIO	2	1								

	Charts and tables			les	Qualitative values	Help					
7		7		₽₽	눰 Import qualitati	🗎 Import qualitative values					
					Computation		- Ind	e	1		
-											

Example in PROLab – Legionella in drinking water Laboratory-specific L-scores (i.e. across tasks)

Gomputation of L Scores for qualitative data
Constantion
Original data Excluded data Results across tasks ask-specific results Inconsistency assessment

quo data

Example in PROLab – Legionella in drinking water

Laboratory- and task-specific L-scores

📅 Computati	on of L Scor	res for q	ualitativ	e data												
📕 Computat	tion															
Original data	Excluded dat	ta Resi	ults acros	ss tasks	Task-sp	becific re	sults In	consister	ncy asses	ssment						
I	Z															
Laboratory		EGIO_PT20 L	LEGIO_PT20 L	EGIO_PT20	LEGIO_PT20 L	EGIO_PT20 L	LEGIO_PT20 I	EGIO_PT20								
1	0,183	0,055	0,183	0,176	0,109	0,054	0,064	0,064	-1,377	0,065	0,065	0,137	0,060	0,125	-0,048	0,119
2										0,065	0,065	0,137	0,060	0,125	-0,048	-1,673
3	-1,458	0,055	0,183	0,176	0,109	0,054	-1,948	-1,948	0,213	0,065	0,065	0,137	0,060	0,125	-0,048	0,119
4	0,183	0,055	0,183	0,176	-1,712	-2,020										
5																
6																
7																
8	0,183	0,055	-1,458	0,176	0,109	0,054	0,064	0,064	0,213	0,065	-1,947	-1,603	-1,982	-1,646	-0,048	0,119
9																
10	0,183	0,055	0,183	0,176	0,109	0,054	0,064	0,064	0,213							
11	0,183	0,055	0,183	-1,478	0,109	0,054	0,064	0,064	0,213	0,065	0,065	0,137	0,060	0,125	-0,048	-1,673
12																
13	0,183	0,055	-1,458	0,176	0,109	0,054	0,064	0,064	0,213							
14																
15																
16	0,183	0,055	-1,458	-1,478	-1,712	0,054	0,064	0,064	-1,377	0,065	0,065	-1,603	0,060	0,125	-0,048	0,119
17	-1,458	0,055	0,183	0,176	0,109	0,054	0,064	0,064	0,213	0,065	0,065	0,137	0,060	0,125	-0,048	0,119
18																
19																
20	0,183	0,055	0,183	0,176	0,109	0,054	0,064	0,064	0,213	0,065	0,065	0,137	0,060	0,125	-0,048	0,119
21	0,183	-2,014	0,183	0,176	0,109	0,054	0,064	0,064	0,213							
22	0,183	0,055	0,183	0,176	0,109	0,054	0,064	0,064	0,213	0,065	0,065	0,137	0,060	0,125	2,074	0,119
23																
24													0,060	-1,646	-0,048	0,119
25	0,183	0,055	0,183	0,176	0,109	0,054	0,064	0,064	0,213	-1,947	0,065	0,137				0,119
26				0,176	0,109	0,054	0,064	0,064	0,213	0,065	0,065	0,137	0,060	0,125	-0,048	0,119
27																
28	0,183	0,055	0,183	0,176	0,109	0,054	0,064	0,064	0,213							
29	-1,458	0,055	0,183	-1,478	0,109	0,054	0,064	0,064	-1,377	0,065	0,065	0,137	0,060	0,125	-0,048	0,119
30																

quo data

- Basic idea: transform the class labels into numerical values.
- For instance, if there are 12 classes, number them 1 through 12
- The z-scores are then calculated on the basis of these numerical values
- The assigned value x_{pt} is the numerical value corresponding to the correct class
- The result x_i is the numerical value corresponding to the class chosen by laboratory i
- The reproducibility standard deviation σ_{pt} is best calculated by means of a robust algorithm (e.g. the Q method) in order to take into account the discrete nature of the numerical values and to minimize the effect of outliers.
- Note that the transformation of class labels described above corresponds to a Euclidian metric in a one-dimensional space with equidistant "distances" between the classes.
 One could implement a similar approach where the distances are not equidistant.
- This approach is only applicable if the correct class lies somewhere near the middle of the ordered classes.

If the "correct class" lies at either end of the ordered classes, the z-score approach cannot be applied. For such cases, the L1 approach can be applied.

An added degree of sophistication: the level of difficulty/penalty for error can be mapped/controlled via difference scores.

Example: Identification of firearms

- 5 levels of conclusion (classes), labelled A, B, C, D, E
- A = "the cartridge matches the firearm"
 - B = "similar"
 - C = "possible match"
 - D = "clear differences"
 - E = "all but certain that the cartridge does not match the firearm"
- For a given task, the correct class (here: either A or E) is known.

QUO data

• A Probit model can be fitted that takes in account the actual distribution of *Difference scores*

$$\mathbf{L}_{1} = \boldsymbol{\theta}_{0} + \boldsymbol{\theta}_{1} + \dots + \boldsymbol{\theta}_{j} - \boldsymbol{\beta}_{i}$$

where

- $\theta_0, \theta_1, \theta_2, \theta_3$ and θ_4 are the estimated weights of the Difference scores 0, 0.5, 1, 3 and 4
- The index *j* represents the *difference score* corresponding to the submitted Conclusion Level
- $-\beta_i$ denotes the estimated level of difficulty of Test set i (the higher this coefficient, the greater the difficulty)
- Interpretation:
 - − $L_1 < 2 \rightarrow$ acceptable
 - − $L_1 > 2 \rightarrow$ questionable performance
 - − $L_1 > 3 \rightarrow$ unsatisfactory performance

L_1 -scores

Theta values and controlled penalization via difference scores

Test	Number	of laboratories	having submit	ted Conclusion	n Level
set	А	В	С	D	E
2	49	4	0	1	0
6	38	10	4	2	0

Test set	Result	Difference
	А	0
	В	0
2	С	0.5
	D	3
	Е	4
	А	0
	В	0.5
6	С	1
	D	3
	Е	4

		0	1	2	3	
Set		1.3492	1.8133	1.9091	2.0509	
1	0.00					
2	-0.70	98.0%	99.4%	99.5%	99.7%	
3	-0.32					
4	-0.76					
5	-0.64					
6	0.68	74.9%	87.2%	89.1%	91.5%	
7	0.50					
8	0.55					
9	-0.48					
10	-0.40					
11-5	COLOC		Di	ifference sco	re	
	cores	0	0.5	1	3	4
1						
2		0	2.22	2.55	2.67	2.97
3						
4						
5						
6		0	0.88	1.18	1.30	1.72
7						
8						
9						
10						

	Difference score									
Test set	0	0.5	1	3	4					
1	0	1.54	1.86	1.98	2.32					
2	0	2.22	2.55	2.67	2.97					
3	0	1.85	2.18	2.29	2.62					
4	0	2.29	2.62	2.74	3.03					
5	0	2.16	2.50	2.61	2.91					
6	0	0.88	1.18	1.30	1.72					
7	0	1.05	1.36	1.48	1.88					
8	0	1.01	1.31	1.43	1.84					
9	0	2.01	2.34	2.45	2.76					
10	0	1.93	2.25	2.37	2.69					

Test set	Correct answer	Percentage wrong	Α	В	С	D	Е
1	А	24.1 %	N=41 L=0	N=8 L=0	N=4 L=1.54	N=0 L =1.98	N=1 L=2.32
2	A	9.3 %	N=49 L=0	N=4 L=0	N=0 L=2.22	N=1 L=2.67	N=0 L =2.97
3	D/E	13.0 %	N=2 L=2.62	N=0 L=2.29	N=5 L=0	N=19 L=0	N=28 L=0
4	A	20.4 %	N=43 L=0	N=10 L=0	N=1 L =2.29	N=0 L=2.74	N=0 L=3.03
5	D/E	3.7 %	N=1 L=2.91	N=0 L=2.61	N=1 L=0	N=10 L=0	N=42 L=0
6	А	29.6 %	N=38 L=0	N=10 L=0.88	N=4 L=1.18	N=2 L=1.30	N=0 L=1.72
7	А	53.7 %	N=25 L=0	N=19 L=0	N=5 L=1.05	N=0 L=1.48	N=5 L=1.88
8	E	57.4 %	N=4 L=1.84	N=2 L=1.43	N=5 L=1.01	N=20 L=0	N=23 L=0
9	A	3.7 %	N=52 L=0	N=2 L=2.01	N=0 L=2.34	N=0 L=2.45	N=0 L=2.76
10	E	38.9 %	N=1 L=2.69	N=0 L=2.37	N=1 L=1.93	N=19 L=0	N=33 L=0

• Combined probabilities corresponding to the invidivual (test set-specific) scores

The overall scores can be obtained by multiplying the individual probability values. For instance, an L₁-score of 2 corresponds to a probability of around 5 % and an L₁-score of 1 corresponds to a probability of around 32 %. Accordingly, the combined probability is around $0.05 \cdot 0.32 \approx 0.014$, that is 1.4 %. This, in turn, would correspond to a combined L₁-score of 2.4.

• The overall assessment of laboratory performance is therefore performed by computing "robust" **tolerance** and **control limits** for the overall L₁-scores.

Summary

- The z-score approach is relatively simple
- Constraint: the "correct class" should lie near the middle of the range of classes
- Separate evaluation per test set (sample) i.e. no combined evaluation of "level of difficulty" and "lab competence"

Advantages of L₁ scores

- Flexibility regarding the position of the "correct class"
- Combined evaluation of task difficulty and lab performance
- Map level of difficulty via difference scores