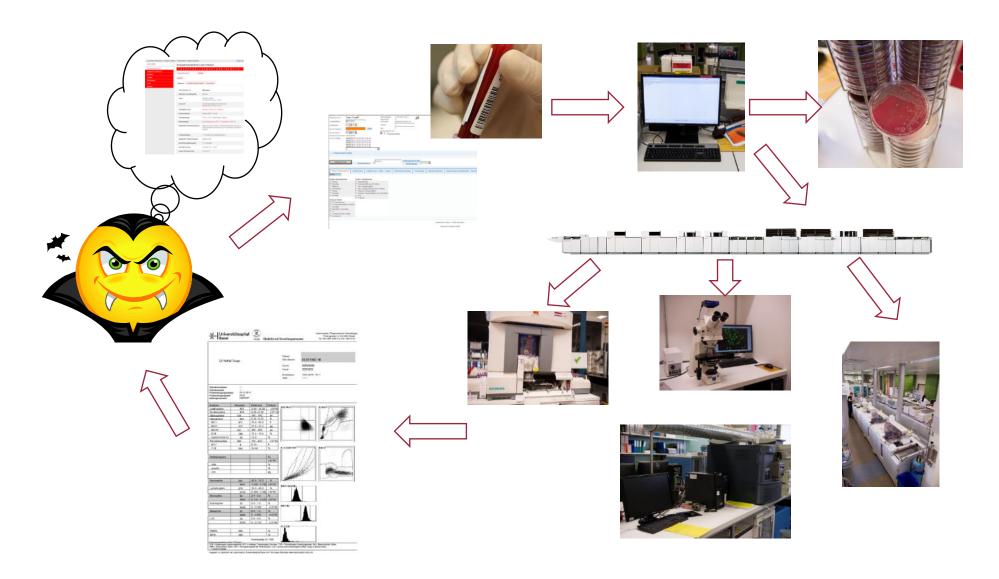

Laboratory medicine – mandatory quality controls are self-evident

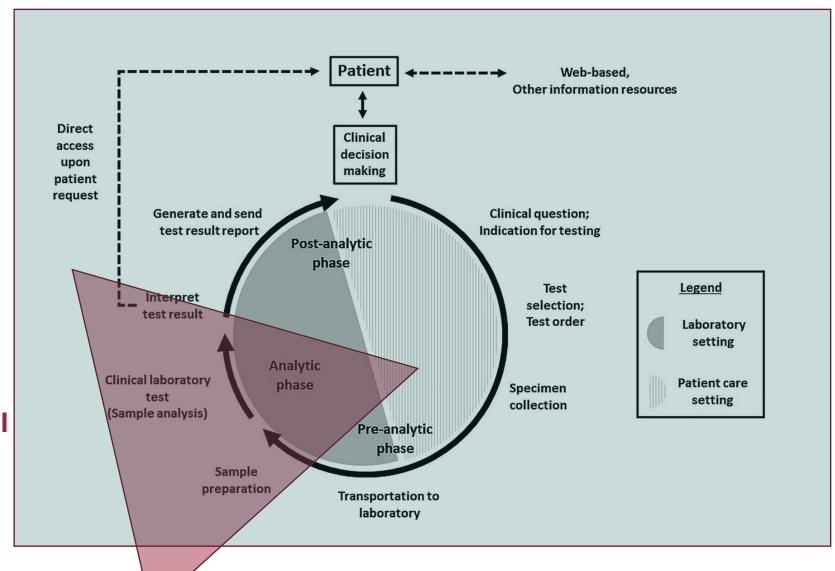
Katharina Rentsch Head laboratory Medicine and Clinical Chemistry

Eurachem Workshop 2023 Berne 23.5.2023

Laboratory Medicine


Laboratory Medicine

Some numbers from the Laboratory Medicine in the University Hospital Basel:


- Opening time:
 - Core Lab: 24/24h, 365/365d
 - Specialized labs: Mo Fr, 8 17, some of them also Saturday and Sunday
- 1089 different analytes according of the accreditation list
- 423 SOPs describing analytical methods
- 2022: 7.1 million lab results
- 250 employees
- Turn-around time for emergency samples (~30% of all samples): < 1 hour

From blood collection to the report of results

The total testing process in the medical laboratory

Accreditation ISO 15189

Quality control

Analytical methods in the medical laboratory

- Wide spectrum of analytical techniques:
 - Photometry
 - Immunoassays
 - Ion selective electrodes, amperometry
 - Microscopy
 - Culture
 - HPLC/GC coupled to UV-, fluorescence or mass spectrometry detectors
 - Flow cytometry
 - PCR
 - Next generation sequencing (NGS)
 - Atomic absorption spectroscopy, ICP-MS
 - Electrophoresis

•

Sample materials in the medical laboratory

Source of the analytical methods used in the medical laboratory

- Commercial kits with dedicated methods, reagents, calibrators and controls in connection with a fully automated specific instrument
- Commercial kits which are applied on different commercial instruments or are performed manually (e.g. ELISA's, LC-MS/MS kits)
- In-house developed assays which are performed on different instruments (e.g. LC-MS/MS methods, PCR methods)
- Fully manual tests (e.g. microscopy with or without coloring of the preparation)

Information on a sample available in the medical laboratory

- Name, sex and birthday of the individual
- Sender (general physician's office, outpatient clinic, inpatient department, intensive care unit, emergency station,)
- Optimally: Time of sampling
- Sometimes: Results of earlier samples from the same patient
- ✓ No information on clinical symptoms, no information on medical treatment and actual drug therapy
- ✓ Plausibility of the test results can only be checked with the comparison of different assays in the same sample
- ➤ The medical laboratory needs special measures to control the quality of its results during 24/24h

The medical laboratory

- Laboratory medicine is an analytical field with a wide variety of very complex and extremely variable samples
- The «target» value of the sample is always unknown
- With the combination of different results in the same sample, plausibility of a test result can be estimated
- The laboratory in most cases does not have any information on the patient's symptoms
- A large number of analytical methods are used with different levels of traceability

Legal regulation of medical analyses

- Operating permit
- Accounting permit to send bill to the health insurances
- Requirements for the laboratory (e.g. qualification of the personnel, safety measures to protect the environment)
- Requirements for the analytical quality (e.g. mandatory accreditation, mandatory quality controls)

11

A short look back on the development of proficiency testing in Switzerland

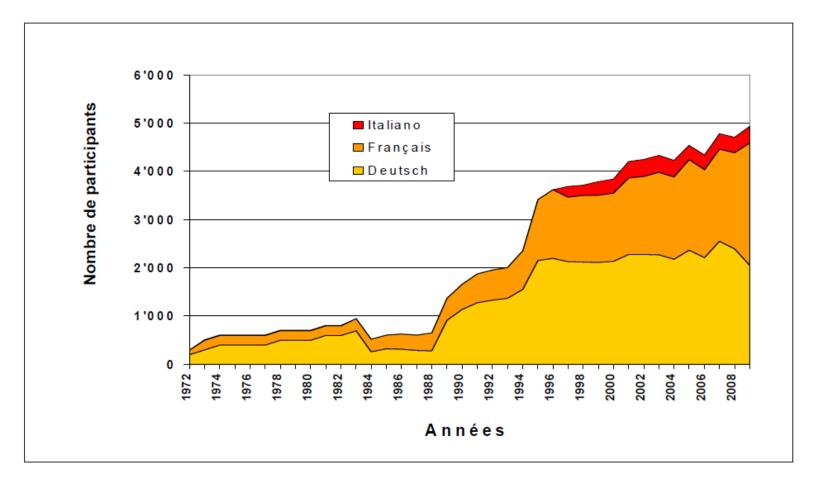
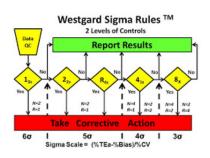
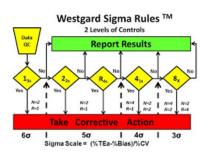


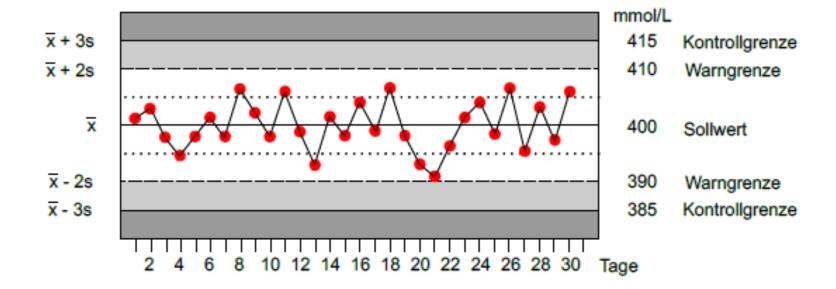
Figure 1 : Evolution du nombre de laboratoires participants aux EEQ du CSCQ de 1972 à 2010

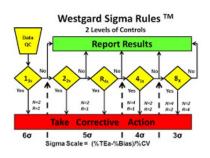
Measures to be taken to control the quality of the results in the laboratory


QUALAB – Schweizerischer Verein für Qualitätsentwicklung im medizinischen Laboratorium QUALAB – Association suisse pour le développement de la qualité dans les laboratories médicaux QUALAB – Associazione svizzera per la promozione della qualità nei laboratori medici

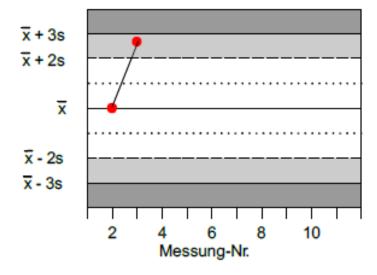
Measures to be taken to control the quality of the results in the laboratory

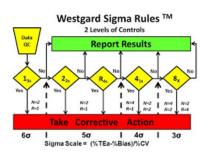

- Internal quality control:
 - Commercial samples accompanied by a leaflet from the manufacturer containing target values and acceptable ranges for each analyte (often method dependent information)
- External quality control
 - Classical proficiency testing
 - > Some analytes are (very) unstable in biological matrices
- General challenges:
 - Matrix effect dependency of most methods
 - In most cases «normal» samples cannot be used due to instability of most of the analytes
 - Addition of stabilizers
 - Solution of analytes in an artificial matrix

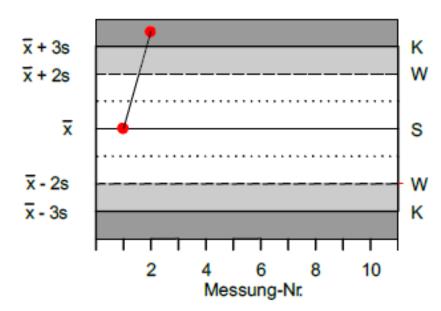


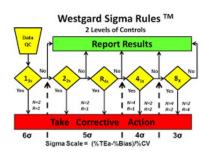

- For every analyte determined in a laboratory internal quality control samples need to be measured
- The target value is usually defined by the manufacturer
- The allowed deviation from the target value is defined in the regulations. For a defined list of analyses (~ 70 parameters) the maximal tolerance is defined by the Qualab
- At least one (1) internal quality control sample needs to be run:
 - Every 50 samples for analysers that run in random access mode
 - Every 12 hours if the number of samples during 12 hours is < 50
 - With every batch if the assay is run batch-wise
 - Every two (2) weeks for a short list of very simple instruments not needing calibration or manual pipetting (e.g. pregnancy rapid test)

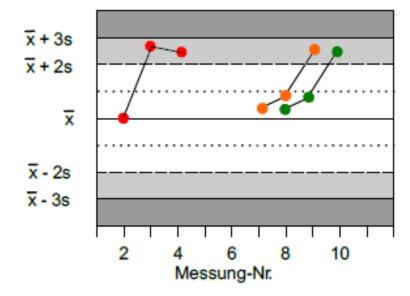
Universitätsspital

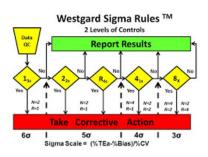


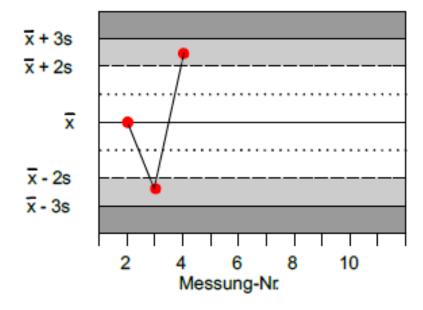

- The data of the internal quality control sample measurement need to be interpreted by the Westgard rules
 - Everything under control


- The data of the internal quality control sample measurement need to be interpreted by the Westgard rules
 - Warning




- The data of the internal quality control sample measurement need to be interpreted by the Westgard rules
 - Method out of control: absolute deviation too high



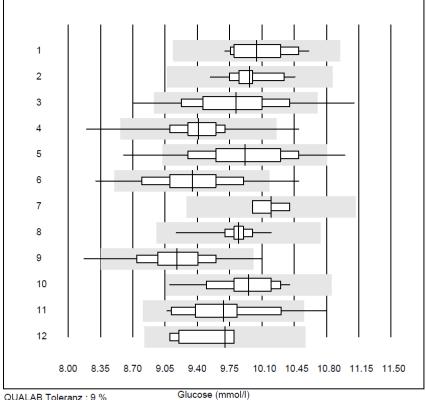


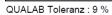
- The data of the internal quality control sample measurement need to be interpreted by the Westgard rules
 - Method out of control: tendency of the results

- The data of the internal quality control sample measurement need to be interpreted by the Westgard rules
 - Method out of control: huge variation between 2 following results

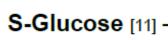
External quality control in Switzerland

- For a defined list of analyses (~ 250 parameters) the participation at an external proficiency testing scheme is mandatory in every laboratory (including physicians practices). The proficiency testing institution must be accredited and accepted by the Qualab.
- The target value is defined by the consensus values for an analyte and partially method specific (differences between matrix effects of different methods/instruments)
- The allowed deviation from the target value is defined in the regulations


21


External quality control in Switzerland

- Depending on the discipline 1 4 samples need to be determined during a year
- Depending on the discipline between 75 and 100% of the results need to be correct
- If an external quality control result is incorrect, a continuous improvement process has to be started by the lab
- If the problem is not solved after 2 years, the reimbursement of the test(s) concerned by the health insurance will be stopped


Glucose

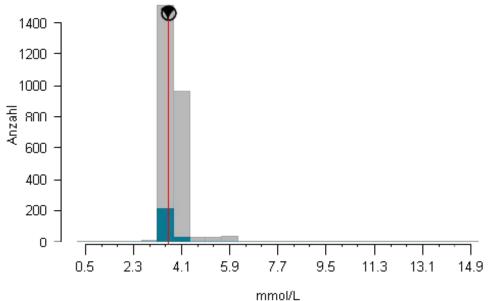
Nr.	. Methode	Total	% OK	% ungen.	% Ausr	Zielwert	VK%	Тур
1	nasschemisch	26	100.0	0.0	0.0	10.0	2.7	е
2	Cobas	29	100.0	0.0	0.0	10.0	2.1	е
3	Reflotron	119	89.9	5.9	4.2	9.8	4.6	е
4	Fuji Dri-Chem	1068	98.7	0.5	0.8	9.4	2.4	е
5	Spotchem SP-4430	105	88.6	9.5	1.9	9.9	5.2	е
6	Spotchem D-Concept	524	94.8	4.8	0.4	9.3	4.3	е
7	Dimension	4	100.0	0.0	0.0	10.2	1.6	е
8	Piccolo	77	100.0	0.0	0.0	9.8	1.5	е
9	Cholestech LDX	286	96.5	2.1	1.4	9.2	3.8	е
10	Selectra Pro	17	88.2	0.0	11.8	10.0	3.3	е
11	Autolyser/DiaSys	19	94.7	5.3	0.0	9.7	4.2	е
12	andere Methoden	7	85.7	0.0	14.3	9.7	3.3	e*
13	iStat Chem8	7	100.0	0.0	0.0	9.2	1.2	е

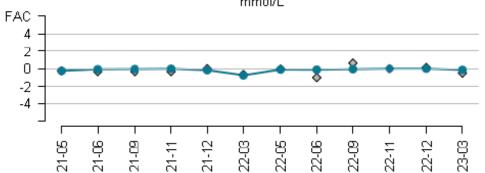
-0.45

Ihre Resultate:

Gerät: Cobas 8000

▼ Resultat: 3.6 mmol/L


QUALAB Auswertung: Konform


QUALAB Bereich: [3.3-4.0] (9%)

FAC-Wert: -0.14 (Ausgezeichnet) ● -0.5 ♦

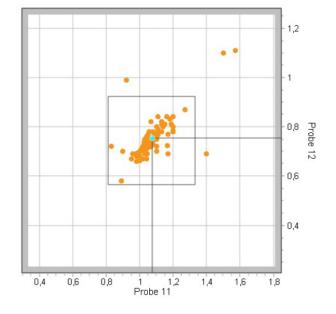
Z-Score: -0.47

Methode Hexokinase [147] Alle **Anzahl Teilnehmer:** 248 2587 3.6 mmol/L O Zielwert: 3.7 mmol/L Unsicherheit: < 0.1 mmol/L SD: 0.07 mmol/L 0.22 mmol/L VK: 2.04 % 6.01 %

U02 Urin Teststreifen/HCG

	Zielwert	negativ	positiv	% Erfüllt		
Schnelltest	positiv	16	1150	98.63		
andere Methoden	positiv	0	4	100.00		
hCG+, Abbott	positiv	0	1	100.00		
Quick Vue Plus	positiv	0	1	100.00		
Total		16	1156	98.63		

Kommentar U02


Der Urin stammte von einer gesunden Spenderin. Dem Urin wurde Natriumnitrit und HCG beigefügt.

25

Amiodaron (mg/l, N = 80)										
Kollektiv	Probe	Zielwert	Bewertungs-		Teilnehmerkollektiv			Quote (%)		
	bere		ereic	:h	MW	VK	Anz.	Probe	ges.	
alle Methoden	11	1.07	0.813	-0	1.33	1.07	7.29	80	96.3	95.0
	12	0.744	0.565	-	0.923	0.744	7.53	80	96.3	

Bestehensquote: 95%

Take Home Message

- Medical Laboratories use a huge number of different analytical techniques
- They often operate at least partially during 24hrs and 365 days
- The sample materials are in most cases very complex and not standardized at all
- Since > 50 years internal and external quality controls are analysed
 - In the first decades as a voluntary measure to increase quality of the results, mainly in classical medical laboratories but shortly afterwards also in general practitioner's offices
 - In the 90ties the participation at an external quality control scheme became mandatory as well as the implementation of internal quality controls
 - Since 2022 all results of the external quality control schemes are collected centrally and each laboratory has to sign a statement that internal quality control samples are performed as demanded
- The reimbursement of the results produced is dependent on the successful performance of the internal and external quality control samples

Thank you very much for your attention

