Evaluation of the measurement uncertainty based on in-house validation data

Ricardo Bettencourt da Silva¹,², Alex Williams¹

(1) Eurachem/CITAC Measurement Uncertainty and Traceability Working Group
(2) Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa

Outline

Different approaches for MU evaluation
Uncertainty components
Available guidance
Need for additional guidance
Snapshots of the guide
Final remarks
Different approaches for MU evaluation

- Bottom-up approach
 - Based on in-house validation data
- Top-down approach
 - Based on interlaboratory data
Uncertainty components

- Precision
- Trueness
- Others

Using in-house validation data for MU evaluation

- VAM project, 2000 [1]
- Eurachem/CITAC, QUAM, 2012 (Example A4) [2]

Need for additional guidance

• How to handle the variation of the MU with the concentration
• How to quantify precision improvement from replicate analysis under different conditions
• How to handle systematic effects estimated from the analysis of various reference materials:
 ◦ Correct/ Not correct
 ◦ Systematic effects variation with sample matrix

Guide presented as a tutorial where options are explained!
Snapshots of the guide (1)

How to handle the variation of the MU with the concentration, \(c \)

Above about 2LOQ, the relative intermediate precision, \(s' \) ([\(s' = s/c \)], is approximately constant.

Below about 2LOQ, the absolute intermediate precision, \(s_1 \), is approximately constant.

LOQ – limit of quantification
How to handle the variation of the MU with the concentration, c

Below about 2LOQ, the absolute intermediate precision, s_1, is approximately constant.

Above about 2LOQ, the relative intermediate precision, $s'_1 (s'_1 = s_1 / c)$, is approximately constant.

LOQ – limit of quantification
Snapshots of the guide (2)

How precision improves from replicate analysis

Sample result can be estimated as the mean of replicate results obtained under:

- repeatability conditions
- intermediate precision conditions
Snapshots of the guide (2)

How precision improves from replicate analysis

Sample result can be estimated as **mean of replicate results** obtained under:

- repeatability conditions
- intermediate precision conditions

Validation data:
- Intermediate precision standard deviation: s_l
- Repeatability standard deviation: s_r

If replicates are in agreement with quantified imprecision…

Example: duplicates under repeatability conditions, x_1 and x_2

$$|x_1 - x_2| \leq 2.8s_r$$

(...)
Snapshots of the guide (2)

How precision improves from replicate analysis
If replicates are in agreement with quantified imprecision…
Example: duplicates under repeatability conditions, \(x_1\) and \(x_2\):
\[|x_1 - x_2| \leq 2.8s_r\]

Precision standard uncertainty, \(u_p\)

<table>
<thead>
<tr>
<th>Single Analysis</th>
<th>Mean of (n) replicates obtained on different days (dd)</th>
<th>Mean of (n) replicates obtained on the same day (sd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_p = s_I)</td>
<td>(u_p(n; \text{dd}) = \frac{s_I}{\sqrt{n}})</td>
<td>(u_p(n; \text{sd}) = \sqrt{s_I^2 + \frac{s^2_r(1 - n)}{n}})</td>
</tr>
</tbody>
</table>

Precision reduction from replicate analysis if \(s'_I / s'_r = 3\):

![Graph showing precision reduction with number of replicates](image)
Snapshots of the guide (2)

<table>
<thead>
<tr>
<th>Single Analysis, u_p</th>
<th>Mean of n replicates obtained on different days (dd), $u_p(n; dd)$</th>
<th>Mean of n replicates obtained on the same day (sd), $u_p(n; sd)$</th>
</tr>
</thead>
</table>

Precision reduction from replicate analysis if $s'/s_r = 3$:

![Graph showing precision reduction from replicate analysis](image)

- $u_p(n)/u_p$
- $n = 2$
- Different day
- Same day

19

20
Snapshots of the guide (2)

Trueness uncertainty assessed from N reference materials
Evaluated through the determination of analyte recovery:

\[
\frac{c}{c_{\text{Ref}}} \quad \text{measured concentration}
\]
\[
\frac{c_{\text{Ref}}}{\text{reference concentration}}
\]

Recovery value is fit for results correction if systematic effects are proportional to the concentration.

\[
\sigma = \sqrt{\sum_{i=1}^{N} \left(\frac{c_{i}}{c_{\text{Ref}(i)}} \right)^2 \left(\frac{R_i^2}{R_i^2 \cdot n_i} + \frac{u^2(c_{\text{Ref}(i)})}{c_{\text{Ref}(i)}^2} \right)}
\]
Snapshots of the guide (2)

Trueness uncertainty assessed from \(N \) reference materials

After recovery corrections has been made:

\[
\text{square of the relative standard uncertainty of the } i\text{th reference value}
\]

\[
u_R = \sqrt{\sum_{i=1}^{N} \left(\frac{1}{R_i} \left[\frac{S_i^2}{R_i^2} \cdot n_i + \frac{u^2(C\text{Ref}(i))}{c_{\text{Ref}(i)}} \right] \right)}
\]

\(n_i \) = number of \(i \)th recovery tests

\(N \) = recovery variance (interm. pres.)

\(\text{recovery variance} \)
FINAL REMARKS

Additional guidance on using in-house validation data for MU evaluation is needed

The simplification of MU evaluation involves facing some challenges properly

Online Eurachem/CITAC Workshop on:
Measurement uncertainty evaluation based on in-house validation data

Dates: 25-26 October 2022