Phthalates in tattoo and Permanent Make Up inks: quantification and validation by GC/MS.

C. Leoni1, C. Majorani1, C. Abenavoli1, M. FAMELE1, R. Lavalle1, L. Palleschi1, C. Ferranti1, L. Fava1, R.M. Fidente1, M.L. Polci2, S. D’Ilìo1, R. Draisci1

1Istituto Superiore di Sanità, National Centre for Chemicals, Cosmetic Products and Consumer Health Protection, Rome, Italy
2Italian Ministry of Health, Rome, Italy

Introduction

Over the last few years, the huge diffusion of the practice of tattooing and permanent make-up (PMU) led EU Member States to focus the attention on possible risks for human health that may arise from the injection of inks into the dermis. Then, a possible exposure to potentially hazardous substances may occur. Among these, phthalates are substances that may be contained in inks that are classified as toxic for reproduction under the regulation (EC) N. 1223/2009 on Cosmetic (1). The EU introduced a number of measures in order to make an attempt to face the increasing concerns about these risks for the population. In 2008, the Council of Europe issued the Resolution ResAp (2008)1 [3], that defined requirements and criteria for the evaluation of the safety of tattoos and PMU and drew a list of substances that should not be present in tattoo/PMU inks. A forthcoming restriction according to Annex XVII of the regulation (EC) N. 1907/2006 (REACH) on substances in tattoo and PMU ink will definitely regulate the sector [4]. The Laboratory for Chemical Safety (Istituto Superiore di Sanità), as National Reference Laboratory for the implementation of REACH and CLP regulations, carried out the development and in-house validation of a GC-MS method for the quantification of nine phthalates in this matrix. Method validation was performed according to requirements of ISO/IEC 17025 [5] and Eurachem Guide “The Fitness for Purpose of Analytical Methods. A Laboratory Guide to Method Validation and Related Topics 2nd ed. [6].

Materials and Methods

Phthalates selection

Phthalates extraction and Sample preparation

\begin{tabular}{|c|c|}
\hline
CAS & Phthalates \\
\hline
84-69-5 & Di(2-ethylhexyl) phthalate (DEHP) \\
84-74-2 & Dibutyl phthalate (DBP) \\
117-82-8 & Bis(1-methoxyethyl) phthalate (DMEP) \\
705-00-5 & Diisopentyl phthalate (DIPP) \\
131-18-0 & Di-n-pentyl phthalate (DnPP) \\
84-75-3 & Dibenzyl phthalate (DnBP) \\
85-68-7 & Benzylbutyl phthalate (BBP) \\
117-81-7 & Bis(2-ethylhexyl) phthalate (DEHP) \\
117-84-0 & Di-n-octyl phthalate (DnOP) \\
\hline
\end{tabular}

GC Conditions

- Column: Zebron Semivolatile, 30 m x 0.25 mm i.d., 0.25 μm film
- Flow Mode: 1 mL/min, constant flow (Hewlett Packard)
- Inlet Mode: 20:1 Split
- Injection Amount: 1 μL
- Inlet Temperature: 290° C
- Solvent Delay: 4.5 minutes
- Initial Oven Temp, Hold Time: 150° C, 1 min
- Ramp 1: 30° C/min, 280° C
- Ramp 2: 15° C/min, 310° C
- Final Hold Time: 3 minutes or longer

Results

For all substances of interest, performance characteristics such as Limit of Detection (LoD, 0.044 μg/g - 0.115 μg/g), Limit of Quantification (LoQ, 0.148 μg/g - 0.384μg/g), Working Range (1.48 μg/g - 35.10 μg/g), Intermediate Precision (CV % 3.29% - 13.60%), Recovery (89.1 % - 93.0%) were assessed.

Measurement uncertainty was evaluated using the best available estimate of overall precision and bias (recovery) according to the Eurachem guide “Quantifying uncertainty in analytical measurement (QUAM: 2012)” [7].

\[U_c = \sqrt{u_r^2 + u_{rec}^2 + u_{r2}^2} \]

\[U = u_c \times k \]

Conclusions

In spite of the challenging matrix to be analyzed, the present in-house validated method is found to be accurate and sensitive, furthermore, it allows a fast processing of samples and it is cost-effective which makes it particularly suitable for use in the official controls on tattoo/PMU inks. This method will be a reliable tool in view of the REACH restriction. On 15 March 2019 the Opinion on an Annex XV dossier proposing restrictions on substances used in tattoo inks and permanent make-up was adopted by the Committee for Risk Assessment (RAC) and the Committee for Socio-economic Analysis (SEAC). The document proposed an option to establish limits of concentration.

References