The way forward for Uncertainty from Sampling

Michael H Ramsey
School of Life Sciences,
University of Sussex, Brighton, UK

Overview

• New applications of existing UfS estimation methods
 – In situ – at mm scale (PXRF), and µm scale (SIMS) – sensors in general
 • Passive – Y-ray Spec
 – On site – briefly mentioned here
• Need to further develop methods for estimation of UfS
• Gaining benefits from knowing UfS
 – E.g. improving sampling to reduce UfS to achieve FFP
• External factors affecting take up of UfS estimation
 – Management of the whole measurement process
• Conclusions
UfS estimation for a wider range of measurement types

In situ measurements in general

- Taken *in situ* without disturbing or removing the test material
 - Sampling indivisible part of measurement process, e.g.
 - Soils - handheld portable (P)XRF for some metals
 - Minerals – SIMS at micron scale
 - Gases - many sensors – how most measurements are made!
 - e.g. Photolisation detectors for VOCs, (e.g. benzene), IR for CH₄, CO₂
 - Liquids - e.g. pH, UV-Vis for NO₃, TOC, H₂S
 - Clinical - Transcutaneous Bilirubinometer (TcB) – jaundice?

- Less expensive than traditional *ex situ*, so
 - more measurements can be taken
 - giving better coverage of target in space and/or time
 - Even 100% coverage – e.g. groundhog (γ-ray spec)

- Measurements often have larger uncertainty
 - due partially to heterogeneity of analyte concentration (not mixed)
 - detection limits often not as low as for *ex situ* measurements
 - U can be estimated by duplicate method (or SPT)
 - can be shown fit-for-purpose if UfS quantified (example follows)

UfS estimation for *in situ* measurements

- ‘Sample duplicate’ = duplicated positioning of probe, using same sampling protocol

- ‘Analytical duplicate’ from duplicated measurements made without moving probe

- Systematic component of uncertainty (from bias)
 - can’t be estimated only with matrix-matched CRMs, as:

<table>
<thead>
<tr>
<th>CRM</th>
<th>Dried</th>
<th>Ground</th>
<th>Homogenized</th>
<th>Compacted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test material</td>
<td>Moist</td>
<td>Unground</td>
<td>Heterogeneous</td>
<td>Un-consolidated</td>
</tr>
</tbody>
</table>

- Comparison required, between measurements made *in situ* and those made *ex situ*,
 - ideally with independent analytical method for same measurand
 - on samples taken from same sampling target

- Explain with Example
UfS estimation for *in situ* measurements (at 5mm scale)

- Nature reserve - **West London**
- Ex-Firing range
- Measurements of Pb concentration in topsoil.
- Compare *in situ* PXRF against traditional field sampling
 - with *ex situ* lab (AAS) measurements
- 100 x100m site – 36 sampling targets
- UfS estimated with duplicate method
 - balanced design
 - at 9 sampling targets
- Bias against 6 CRMs, -11% for PXRF, -1% for AAS

‘Bias’ between *in situ* and *ex situ* = systematic component of UfS – using FREML

- Model relationship using FREML* (n =35)
 - Allows for uncertainty on BOTH axes
- Model: In situ Pb = 0.43 (± 0.08) x Ex situ Pb + 77 (± 26)
- ‘Bias’ = -57%
 - caused by soil moisture, material >2mm, surface roughness, and depth difference
- Debate about whether to (1) ‘correct’ *in situ* measurements (or *vice versa*)
 - Perhaps *in situ*Pb is closer to true value being experienced by living organisms*
 - Depends on definition of measurand
- Or (2) include ‘bias’ in estimate of U
- Needs further research

*Functional Relationship Estimation by Maximum Likelihood, AMC Technical Brief Number 10 (2002), software from: https://www.rsc.org/Membership/Networking/InterestGroups/Analytical/AMC/Software/
UfS estimation of \textit{in situ} measurements & FFP

- Random component of UfS calculated using RANOVA of duplicate measurements -

<table>
<thead>
<tr>
<th>parameter</th>
<th>\textit{Ex situ}</th>
<th>\textit{In situ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Pb}]\text{ mg kg}^{-1})</td>
<td>\begin{tabular}{c}749 \end{tabular} & \begin{tabular}{c}1045 \end{tabular}</td>
<td></td>
</tr>
<tr>
<td>(s_{\text{analytical}})</td>
<td>\begin{tabular}{c}14 \end{tabular} & \begin{tabular}{c}61 \end{tabular}</td>
<td></td>
</tr>
<tr>
<td>(s_{\text{sampling}})</td>
<td>\begin{tabular}{c}310 \end{tabular} & \begin{tabular}{c}529 \end{tabular}</td>
<td></td>
</tr>
<tr>
<td>(s_{\text{meas}})</td>
<td>\begin{tabular}{c}311 \end{tabular} & \begin{tabular}{c}532 \end{tabular}</td>
<td></td>
</tr>
<tr>
<td>(U')</td>
<td>\begin{tabular}{c}83% \end{tabular} & \begin{tabular}{c}102% \end{tabular}</td>
<td></td>
</tr>
</tbody>
</table>

- In \textit{In situ} Analysis gives higher \(U\) – but not dominant source
- Sampling is dominant sources of \(U\) (>99\% in both cases)

- One Benefit of knowing UfS is the ability to judge fitness-for-purpose, described in:-
 - UfS Guide Section 16 of, applied here using Optimized Uncertainty method = OCLI
 - i.e. was the sampling (and analysis) good enough?

Judging FFP using Optimized Uncertainty (OCLI) equation

\[E (L) = C \left[1 - \Phi \left(\frac{\epsilon_1}{s_{\text{meas}}} \right) \right] + \frac{D}{s_{\text{meas}}^2} \]

- \(E (L)\) – expectation of financial loss
- \(s_{\text{meas}}\) – measurement uncertainty
- \(\Phi\) – standard normal cumulative distribution function
- \(\epsilon_1\) – error limit = \(|T - c|\)
 - \((T = \text{threshold value, } c = \text{contaminant concentration})\)
- \(D\) – combined optimal cost for sampling and analysis
- \(C\) – consequence costs (e.g. potential losses resulting from misclassification)

<table>
<thead>
<tr>
<th></th>
<th>Cost per measurement (£)</th>
<th>Consequence cost of misclassification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(L_{\text{samp}})</td>
<td>(L_{\text{anal}})</td>
</tr>
<tr>
<td>Ex situ (AAS)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>In situ (PXRF)</td>
<td>13</td>
<td>10500</td>
</tr>
</tbody>
</table>
Judging FFP – at Acceptable level of Uncertainty?

Cost of lowering U on measurement vs. Uncertainty mg/kg (s_{meas})

- Actual U
- Optimal U

Cost of misclassification, e.g. unnecessary remediation

General Case

Is in situ or ex situ more cost effective?

For Case Study

Neither in situ or ex situ procedure is currently Fitness-for-Purpose (FFP)

- Both in situ (●) and ex situ (▲) have far larger U_{meas} ($x5$) than is optimal to achieve FFP
- Reduction of U_{F} needs use of composite measurements within each target
- 4-fold Composite measurement should lower $U_{F} \times 2$, & reduce cost by $\sim x2$
- Using model ($s^2 \sim 1/m$)

- In situ has generally lower overall cost ($x3$) without improvement

Ex situ optimal uncertainty: 68 ug g$^{-1}$

In situ optimal uncertainty: 88 ug g$^{-1}$

Ex situ actual uncertainty: 311 ug g$^{-1}$

In situ actual uncertainty: 532 ug g$^{-1}$

£11,000:

£3,700
Duplicate Method at micron scale on *in situ*

Estimation of UfS and $U_{\text{heterogeneity}}$ for SIMS measurements

Fragments of NBS 28 Glass - Mean diameter ~ 230μm
Mass estimated as ~ 20μg
Select 100 sample fragments
Use Duplicate method to estimate U

Duplicate measurements - 50 μm apart
- made on each of 100 fragments
- measure at different times in run
- run over 15 hours

Sample mass from crater - ~ 300-350 pg

18O/16O in NBS 28 Glass CRM
Helmholtz Zentrum, Potsdam, Germany

SIMS = Secondary Ion Mass Spectrometry
Ramsey MH and Wiedenbeck M. (2017) Geostandards and Geoanalytical Research, 42,1,5-24

Uncertainty estimates for NBS28 at micron scale

- Use ANOVA to estimate Uncertainty
- expressed U in units of ‘per mil’ ‰ = $1000 \times \frac{s}{x}$
 - Unit widely used in isotopic analysis for repeatability and heterogeneity,

Summary of Uncertainty estimates for NBS28

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Between-dups</th>
<th>Within-dups</th>
<th>Num pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncertainty 1s(‰)*</td>
<td>0.31</td>
<td>0.28</td>
<td>0.14</td>
<td>97</td>
</tr>
</tbody>
</table>

- $U_{\text{anal}} =$ Analytical repeatability estimated from ‘within-duplicate’ = 0.14‰
- $U_{\text{samp}} =$ between-fragments from Heterogeneity (U_{heter}) quantified as 0.28 ‰
 - adds to U_{anal} to give total repeatability/ U_{meas} of 0.31‰
 - dominates total measurement variance (U_{samp} contributes 81%)

- Full measurement uncertainty estimate would require bias against matched CRMs & between-lab variance

Ramsey MH and Wiedenbeck M. (2017) Geostandards and Geoanalytical Research, 42,1,5-24
UfS of passive **in situ** measurements of radioactive decay

Case Study: 137Cs in soil at Dounreay

- Area within nuclear decommissioning site
 - 137Cs measured with γ-ray spectrometry (both **in situ** and **ex situ**)
- **Objectives** - *Comparison of in situ against ex situ surveys*

In situ measurements by γ-ray spectrometry

- **In situ** NaI detector responds to γ-rays (e.g. from decay of 137Cs)
- Mass of soil ‘sample’ 200 - **1000 kg**
- ~**1000 larger mass** than physically extracted (e.g. ~ **0.5 kg**)
 - for **ex situ** measurement by γ-ray spec.
Measurement Uncertainty at individual sampling targets

U estimated using *duplicate method*.

Sampling and analytical duplicates at 8 sampling targets for *ex situ*, & 12 for *in situ*

Sampling and analytical uncertainty using robust ANOVA.

<table>
<thead>
<tr>
<th>Sampling Target</th>
<th>Analysis 1</th>
<th>Analysis 2</th>
<th>Analysis 1</th>
<th>Analysis 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Sample 2</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ex situ</th>
<th>In situ</th>
</tr>
</thead>
<tbody>
<tr>
<td>U'_anal %</td>
<td>5.1</td>
</tr>
<tr>
<td>U'_samp %</td>
<td>72.5</td>
</tr>
<tr>
<td>U'_meas %</td>
<td>72.6</td>
</tr>
</tbody>
</table>

- *U'_anal* greater for *in situ* - Shorter counting time, environmental conditions.
- *U'_samp* much greater for *ex situ* - Effect of very small sample mass + heterogeneity.
- Combined *U'_measurement* greatest for *ex situ* - exceeds *in situ* by factor of 6 in this area.
 - Bias in measurements could also be included in U, but no CRM was available
 - No significant bias found between measurements made *in situ* and *ex situ*

UfS estimation for *On site* measurements

- ‘On site’ measurements - when a sample taken from original location, usually prepared and homogenised, measured close to its original location.
- Situation is intermediate in complexity between traditional *ex situ* measurements, and *in situ* measurements

Example: Determination of total petrol hydrocarbons (TPH) in stockpiled soil*

- *ex situ* measurement made by on-site method
 - SiteLAB_UVF 3100 fluorescence spectrometer
- compared against those made in remote laboratory (GC-FID, with more QC)
- Duplicate method applied to both methods in usual way (+CRMs for bias)
 - on site [TPH] 3 x higher than off site measurement, maybe due to:
 - loss of volatile TPH in samples taken off site
 - differences between the definitions of measurand for the two TPH analytical methods

MOU23 Ditch this slide - just put key points elsewhere
(conclusions?)
Microsoft Office User, 07/11/2019
General directions for UfS estimation and reduction (1)

1. **Encourage use of Uncertainty Factor**
 - as a better way to express U in appropriate circumstances

2. **Make available Confidence Limits on estimates of UfS** (and heterogeneity)
 - Enables rigorous comparison of UfS values estimated by different methods and for different analytes

3. **Improve ways of Modifying UfS** in order to achieve Fitness-for-Purpose (FFP)
 - Why some systems behave in predictable ways ($s^2 \propto 1/m$), and others don’t
 - Improve the modelling of UfS for such systems

4. **Encourage and develop Sampling QC procedures** (Section 13 of Guide) to check:
 - whether the conditions present at validation are still present
 - whether initial estimates of U are still applicable
 - Especially where subsequent targets very different (e.g. contaminated land)
 - Perhaps add in separate estimate of heterogeneity for each site?

General directions for UfS estimation and reduction (2)

5. **Compile databases of UfS/UoM estimates across a whole sector** to see:
 A. If there are typical values that could be used for prediction of UfS (e.g. by regulators)
 - As Ellison et al. (2017)*, did for food sector
 - ~27 different food products (from field/store/factory/retail)
 - ~75 different analytes
 - Found Horwitz-like relationship
 - Provides estimate of UfS to within ~ an order of magnitude.

 B. Get more evidence to test whether UfS increases as a function of concentration in other sectors*

 ![Graph showing relationship between log(UfS) and log(concentration)](image)

MOU13 This slide is general wish list - move later? Or combine with later lists?
Microsoft Office User, 02/10/2019
External factors affecting take up of UfS estimation

- Awareness of UfS - improve with 2019 UfS Guide etc.
- Regulatory and accreditation requirements to estimate UfS
 - improving with sampling in ISO/IEC 17025:2017 clause 7.6.1 to evaluate UfS
- Cost of estimating UfS
 - reduce cost of estimation with unbalanced or simple design
 - emphasise reduction in overall cost by avoiding adverse effects of UfS (e.g. loss of product)
- Including UfS in conformity assessment and compliance decisions
 - find better ways
 - e.g. Food sector currently excludes UfS
 - Assumes samples are ‘representative’, therefore UfS is ‘zero’!
- Management of samplers/sampling process
 - need to integrate sampling into whole measurement process
 - Not administer sampling as a separate process
 - Educate samplers in the measurement process

Conclusions

- Increase range of sectors and situations where UfS is being estimated, e.g.
 - in situ measurements (e.g. sensors) makes UfS estimation more applicable
 - needs more development (e.g. correct for ‘bias’?)
 - Passive measurements - in situ can be better than ex situ
 - due to much larger (x 1000) sample mass, and much lower cost (so better coverage)
 - at micro-scale (EPMA, SIMS, LA-ICPMS etc.)
 - for heterogeneity estimation (e.g. for U_{\text{HET}} candidate CRMs)
 - Microbiology and other new sectors
- Realise benefits of knowing UfS, e.g.
 - Enables critical assessment of FFP of all sampling and analytical methods
 - measurements with higher U can be shown to be fit for some purposes
 - e.g. In situ and sensor measurements
- Encourage integrated management of field sampling as part of measurement process