Creating Reliable Data – a Challenge for Non-target Screening

Juliane Hollender¹,², Karin Kiefer¹,², Martin Krauss³, Jennifer Schollée¹, Emma Schymanski¹,⁴, Heinz Singer¹, Jaroslav Slobodnik⁵, Nikolaos Thomaidis⁶

¹Eawag, Swiss Federal Institute of Aquatic Science and Technology, Switzerland
²Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, ³UFZ, Helmholtz Centre for Environmental Research, Germany, ⁴Luxembourg Centre for Systems Biomedicine (LCSB), Univ. of Luxembourg, ⁵Environmental Institute, Slovakia, ⁶Univ. of Athens, Greece

Juliane.Hollender@eawag.ch
Non-target screening is in daily use to manage chemicals at the International Rhine monitoring station.

enviMass

http://www.eawag.ch/en/department/uchem/software/
Analytical strategy

Solid phase extraction followed by LC-HRMS/MS (Orbitrap)
High resolved full scan spectra & MSMS fragmentation spectra

Target analysis
- 50 Priority substances

Site specific substances
- 250

Non-target analysis
remaining masses
∞

Time profiles
Statistical analysis
Changes / trends
Prioritization

x calibration
x exact quantification
x manual data processing
x calibration
x semi-quant. quantification
x automated processing

Ruff et al., Aqua & Gas 2013, 5: 16-25
Daily non-target screening of the Rhine River

Previously unknown chemicals detected due to “stand-out” patterns

Identification
- Molecular formula assignment
- Database search
- Prioritization of hits with information on industrial production
- Confirmation with reference standard

Prioritization using time profiles

2014 2015 2016

0.6 t 0.1 t 0.4 t 0.2 t

precursor in the synthesis of the drug ritalin

1.5
1.0
0.5
0.0

10 major spills of non-target compounds in 2014 with > 25 tons of load

Data of the Rhine monitoring station
Experiences/tools of the NORMAN network

Challenges

- Suspect lists
- Quality control
- False positives versus false negatives
- In-source fragmentation
- Identification confidence
- Semi-quantification without standard

Conclusion & points for the discussion

Example
Monitoring of Swiss groundwater
The mission of the NORMAN network is to:

- Exchange of information and collection of data on emerging environmental substances
- Validation and harmonisation of monitoring tools
- Bottom up activities
- Science to policy interface

> 70 organisations
academia, govermental organisations, research centers, industry

The mission of the NORMAN network is to:

- Exchange of information and collection of data on emerging environmental substances
- Validation and harmonisation of monitoring tools
- Bottom up activities
- Science to policy interface

8 working groups, one on NTS with > 30 participating organizations

https://www.norman-network.net/?q=node/252
Comparison & harmonization of NTS methods in Europe

- Collaborative trials using LC/GC-HRMS/MS: on water (Schymanski et al. ABC, 2015) and dust (Rostkowski et al, ABC, 2019), in 2019 planned for biota and passive samplers

Databases & Tools

- NormaNews exchange (Alygizakis et al, ES&T 2018)

Communication

- NTS group meetings
- NTS workshops / training courses (e.g. CH 2014, N 2017)
- NTS workshop for regulators in Brussels, 2018
NORMAN databases: Suspect List Exchange

- https://www.norman-network.com/?q=suspect-list-exchange
- 53 lists available … specialist collections to market lists
 - Integrated in NORMAN Databases & CompTox Chemistry Dashboard

Quantitative structure retention relationship models for RTI system using chemical structure information

\[RTI = \frac{(RT_x - RT_{\text{min}})}{(RT_{\text{max}} - RT_{\text{min}})} \times 1000 \]

Calibrants	RT (Acclaim C18)	RTI
Guanylurea | 1.31 | 1.00 |
Amitrole | 1.39 | 6.11 |
 Histamine | 1.58 | 20.63 |
Chlormequat | 1.67 | 27.50 |
Methamidophos | 2.76 | 110.77 |
Vancomycin | 3.26 | 148.97 |
Cefoperazone | 4.36 | 233.00 |
Trichlorfon | 5.23 | 299.47 |
Butocarboxim | 6.07 | 363.64 |
Dichlorvos | 7 | 434.68 |
Tylosin | 7.88 | 501.91 |
TCMTB | 9.25 | 606.57 |
rifaximin | 10.06 | 668.45 |
Spinosad A | 11.34 | 766.23 |
 Emamectin B1a | 12.4 | 847.21 |
Avermectin B1a | 13.64 | 941.94 |
Nigericin | 13.94 | 964.86 |
Ivermectin B1a | 14.4 | 1000.00 |

Predicted by QSRR model:
C18 column, H₂O/MeOH formic acid gradient

RTI = 76.379(RT) - 99.912

Aalizadeh et al., J. Chem Inf Mod 2016 & J Haz Mat 2019
Online Platform to Calculate Experimental and Predicted Retention Time Indices

Development and Prediction of Retention Time Indices for LC-HRMS (version 2.0.0)

Select the target ESI:
- +ESI
- -ESI

Select the RTI versus tR calibration mode:
- Prediction limits
- Auto-calibrate
- Manual

Upload RTI calibrants data...
Browse... Calibrants_pos_UOA.csv
Uploaded complete

Status: Processed
Experimental RTI: 220.88
Predicted RTI: 250.83
Experimental tR: 4.2 min
Predicted tR: 4.59 min

Uncertainty: Exp. & Pred. tR are accepted for this candidate (box1)

RTI vs tR calibration curve: RTI= 76.3786 * (tR) - 99.9116 >>> (R^2= 1)

Save the prediction results...
Open access mass spectra libraries

- **European NORMAN MassBank:**
 currently ~53,000 spectra of ~16,000 compounds from 15 main instrument types and 40 institutions

- **MoNa: MassBank of North America:**
 > 200,000 mass spectra including in silico spectra & European MassBank

- **mzCloud - HighChem:**
 17,000 compounds, highly curated, mostly Orbitrap
MassBank enables storage of tentative MSMS spectra

MassBank Record: ET201801

PRZ_M573; LC-ESI-QFT; MS2; CE: 10; R=35000; [M+H]+

Mass Spectrum

ACCESSION: ET201801
RECORD_TITLE: PRZ_M573; LC-ESI-QFT; MS2; CE: 10; R=35000; [M+H]+
DATE: 2016.03.01
AUTHORS: A. Roesch, E. Schymanski, J. Hollender, Department of Environmental Chemistry, Eawag
LICENSE: CC BY
COPYRIGHT: Copyright (C) 2015 Eawag, Dübendorf, Switzerland
PUBLICATION: Rösch, A.; Anliker, S.; Hollender, J. How Biotransformation Influences Toxicokinetics of Azole Fungicides in
COMMENT: CONFIDENCE Tentative identification only (level 3)
COMMENT: INTERNAL_ID 2018
NormaNews: Sharing of emerging contaminants
Retrospective screening of emerging suspects

Alygizakis et al. 2018 ES&T

- 150 suspect compounds
- HRMS data from 14 countries
- QA/QC

Map images © Google Maps
Digital Sample Freezing Platform – DSFP
A digital specimen bank of georeferenced HRMS data

Screening of REACH compounds in samples from the Black Sea

Interactive heatmap available at http://norman-data.eu/NORMAN-REACH, Algyzakis et al., TrAC 2019
How can non-target screening techniques support environmental monitoring and chemicals management?

• NTS can improve the **identification of problematic substances** and support regulatory processes in environmental and chemical legislation (e.g. WFD, the Marine Strategy Framework Directive, REACH)

• NTS can be a **first screening step in the exposure assessment** chain but **does not replace target monitoring**.

• **Harmonized NTS protocols** and **minimum quality requirements** should be established.

• **New protocols / infrastructures** are **needed for efficient NTS data management**, evaluation and sharing.

• **Training** would be beneficial to make NTS more widely accessible.

• **Synergies** between NTS and effect-based methods should be strengthened

Hollender et al., submitted to Env. Sci. Europe
NORMAN Non-target screening guidance document

- **Key input:**
 - experience of NORMAN members from trials etc.
 - Different approaches for different regulatory questions where NTS can help (monitoring, prioritization,…)
 - Guidance of German Water Chemistry Society on Suspect and Non-target screening in water analysis, draft
 - Important topics: Number & type of blanks, Replicate samples/ replicate analyses, Compound domains covered vs. LC/GC & MS method setup, data dependent vs. data independent acquisition

- Presentation of draft version at the SWEMSA 2019 workshop (TU Munich, 21-23/10/19)
- Discussion on general assembly end of November in Milano
- Publish in 2020 with open access in a peer-reviewed journal

Krauss et al., in preparation
Suspect screening of overlooked pesticide TPs in Swiss groundwater
31 groundwater wells with intensive agriculture
(Swiss national monitoring sites)

Workflow

1. Enrichment: vacuum evaporation
2. Analysis: RP-HPLC-ESI-HRMS/MS
3. Automated screening for exact mass
4. Prioritization of suspect hits
5. Confirmation with reference standards
Smart Suspect Screening of pesticide transformation products in groundwater

1120 TPs of ca. 300 pesticides

- 80% of TPs: Eawag-Soil
- 6% Targets
- 14% of TPs: References

*~1000 pesticide TPs, from European pesticide registration (Latino et al. ESPI 2017)
° i.a. PPBD, Lewis et al. HERA 2016, Reemtsma et al., Wat Res 2013

LC-ESI-MS amenability

95%: similar polarity as targets
99% contain N, O, S atom

- Appropriate suspect list
- Appropriate method for compounds on suspect list

Kiefer et al., submitted
Challenges to achieve reliability – quality control

Quality control is necessary for instrumental analysis, but also data processing!

- Perform QC samples in each batch of samples (e.g., composite samples of each matrix, spiked samples, standard mixtures) and a sufficient number of sample processing and instrument blanks.

- Use internal standards (spiked standards) for QC of analytical performance, but also of peak detection, sample alignment, mass accuracy.

- Take the time to adjust the peak detection settings to your data. Automatic parameter optimization is available in some workflows (e.g., XCMS, EnviMass).
Example: aim to not overlook TPs with low ionization efficiency

Validation of workflow
(peak picking, Rt alignment, isotopologues grouping, background substraction, suspect screening, CD 2.1 Thermo) with >200 internal standards

► 97% of internal standards detected
► but 9300 suspects detected
► filtering of noise/background (90%) => 686 hits
► further filtering needed
Filtering of data: in silico fragmentation with MetFrag

- 8 of 10 fragments explained
- Only 34 ChemSpider hits
 \(\Rightarrow \) ChemSpider hits explain <8 fragments

http://c-ruttkies.github.io/MetFrag/

- Compare against other databases
- Check also for in-source fragmentation

Ruttkies et al. J Cheminf 2016
Use of meta information improves identification success

\[m/z \ [M-H]^-
\]
213.9637
\(\pm 5 \) ppm

Elements: C, N, S

5 ppm
0.001 Da

Substructures:
- \(\text{SO}_2 \)
- \(\text{OH} \)

Hydrogen deuterium exchange

RT: 4.54 min
355 InChI/RTs

\[\text{Score}_{\text{Final}} = \omega_{\text{Frag}} \cdot \text{score}_{\text{Frag}} + \omega_{\text{RT}} \cdot \text{score}_{\text{RT}} + \omega_{\text{ref}} \cdot \text{score}_{\text{ref}} + \ldots \]

References
- External Refs
- Data Sources
- RSC Count
- PubMed Count

Suspect Lists
- TOFF
- IDENT
- EPA
- Chemicals

MassBank of North America

MassBank.eu

MS/MS
- 134.0054 339689
- 150.0001 77271
- 213.9607 632466

Ruttkies et al. *J. Cheminf.*, 2016,
Ruttkies et al., ABC 2019
Clear chemical identifiers necessary

McEachran et al. 2018, DOI: 10.1186/s13321-018-0299-2; Schymanski & Williams, 2017 ES&T DOI: 10.1021/acs.est.7b01908

“MS-ready” form
Communicating confidence of identification (HRMS/MS)

Example

- **C₆H₅N₃O₄**
- **192.0757**

Identification confidence

- **Level 1**: Confirmed structure by reference standard
- **Level 2**: Probable structure
 - a) by library spectrum match
 - b) by diagnostic evidence
- **Level 3**: Tentative candidate(s) structure, substituent, class
- **Level 4**: Unequivocal molecular formula
- **Level 5**: Exact mass of interest

Minimum data requirements

- **Level 1**: MS, MS², RT, Reference Std.
- **Level 2**: MS, MS², Library MS², MS, MS², Exp. data
- **Level 3**: MS, MS², Exp. data
- **Level 4**: MS isotope/adduct
- **Level 5**: MS

Questions

- What match value accepted?
- How many fragments in data dependent / data independent acquisition?
- Which exp. data have how much value?
Communicating confidence of identification: Example pesticide TPs

<table>
<thead>
<tr>
<th>Level</th>
<th>Confirmed (Level 1)</th>
<th>Probable (Level 2)</th>
<th>Tentative (Level 3)</th>
<th>Rejected</th>
</tr>
</thead>
</table>
| 19 | • 3 chlorothalonil TPs
• 1 cycloxydim TP
• 1 dimethachlor TP
• 1 fipronil TP
• 2 fluxapyroxad/bixafen TPs
• 1 fludioxonil TP
| 2 | • 1 chlorotoluron TP
| 3 | • 2 chlorothalonil TPs
| 9 | • 9 TPs
| | • 1 metalaxyl TP
• 2 metolachlor TPs
• 2 nicosulfuron TPs
• 1 pinoxaden TP
• 4 terbuthylazine TPs |
| | • 1 fipronil TP
| | • 2 cymoxanil TPs |
(Semi) Quantification without standards

Suspected structure
- with structural similar compounds, e.g. TPs with parent compound
 - Quantitative structure response relationship (e.g. Tanimoto coefficient)

Unknown structure
- Concentration range based on standards with different response ratios (Hollender Wat Res X 2018)
- Average response ratio of standards at similar retention time

Standard 100 ng/L

```
10^5 - 10^9
```

Intensity (Area)

```
Rt (min)
```

Standard 100 ng/L

```
Chlorothalonil TPs
Various compounds
```

Isomers

```
Rt (min)
```

Intensity
Conclusions & Points for discussion

- Instruments & tools are available, application in a clever way is important to successfully and reliably identify new compounds
- Optimization of acquisition and data processing is key
- Meta data are very important for successful identification
- Sharing of spectra, data, standards, experiences etc. is useful (NORMAN network)

- Which kind of quality control samples (composites, replicates,…) and how often?
- How to optimize identification workflow?
- How to select smart suspect lists?
- What kind of meta information are most useful? Retention time, collision cross section in ion mobility, number of references, exposure index,…?
- What are relevant differences in NTS for different samples (environment, food, human)?
- How to improve communication of identification confidence? DDA or DIA spectra acquisition?
- How to improve data sharing of spectra, suspect lists, etc?
Acknowledgements

- Cantonal labs, Federal Institute of Metrology for groundwater sampling
- Syngenta, BASF, Dupont, Bayer for reference standards
- Steffen Ruppe, Dorit Griesshaber, Ingrid Langlois, Jan Mazacek, AUE Basel-City
- Tobias Schulze, UFZ
- Reza, Aalizadeh, University of Athens
- Nikiforos Alygizakis, Jaroslav Slobodnik, Environmental Institute
- Saer Samanipour, Kevin Thomas, NIVA
- Christoph Ruttkes, Steffen Neumann, IPB Halle

Thank you!
Non-Target Analysis for Environmental Assessment
26–30 May 2020 | Durham, NC, USA
SETAC North America Focused Topic Meeting

Save the Date
26–30 May 2020