

Traceability, validation and measurement uncertainty – 3 pillars for quality of measurement results

David MILDE

14th - 15th May Scientific Workshop on Data - Quality, Analysis and Integrity 16th - 18th May General Assembly www.eurachem2018.com

Outline

- Introduction to 3 pillars
- Recommended guidance
- Ex: elemental impurity determination
- Pillars in context
- Conclusion

	Quality of						
	Traceability	r	Validation	lts	Measurement	Uncerainty	
"Foundation Stone"							

Metrological Traceability

Metrological Traceability (VIM 3, Entry 2.41): is a property of a measurement <u>result</u> whereby the result can be related to a <u>stated</u> <u>reference</u> through a documented <u>unbroken chain of calibrations</u> each contributing to the measurement uncertainty.

- Traceability to ... stated reference:
- certified value of a reference material
- definition/realisation of an SI unit
- measurement standard

Types of CRMs:

- Pure substances (with stated purity)
- Standard solutions and gas mixtures (prepared gravimetrically)
- Matrix CRMs (Pb in blood)

ww.NPL.co.uk

Influence of input quantities

- Based on SOP!
- GREEN basic degree of control:
 - beakers, many buffers, at room temperature
- AMBER significant degree of control:
 - calibrated equipment: volumetric flasks, balances, required purity of chemicals
- RED significant degree of control stated references:
 - pure substances, calibration solutions, CRM, ...

Traceability in ISO/IEC 17025:2017

- Annex A (informative) Metrological traceability
 - Establishing metrological traceability
 - Demonstrating metrological traceability

A 3.1 Laboratories are responsible for establishing metrological traceability in accordance with this document. Calibration results from laboratories conforming to this document provide metrological traceability. <u>Certified values of certified reference materials from reference material producers conforming to ISO 17034</u> provide metrological traceability. There are <u>various ways to demonstrate conformity</u> with this document: third party recognition (such as an accreditation body), external assessment by customers or self-assessment.

Traceability Guidance

CITAC

Measurement

2003

in chemical measurement

EURACHEM / CITAC Guide

Traceability in Chemical

A guide to achieving comparable results

Meeting the Traceability requirements of ISO17025

lyst's Guide

Eurachem /

- EURACHEM / CITAC Guide; Traceability Chemical in Measurement (2003): www.eurachem.org;
 - UNDER REVISION
- Barwick V., Wood S.: Meeting the Traceability Requirements of ISO 17025: An Analyst's Guide. LGC, 2005. (ISBN 0 948926 236) LGC fetting standar In analytical sci

Method Validation

Validation (VIM 3, Entry 2.45): verification, where the specified requirements are adequate for an intended use Verification (VIM 3, Entry 2.44): provision of objective evidence that a given item fulfills specified requirements

Checklist Validation The

Performance parameters

- □ Selectivity
- □ Linearity, measuring interval
- \Box LOD, LOQ
- □ Precision
- □ Trueness
 - □Recovery
 - Ruggedness (robustness)

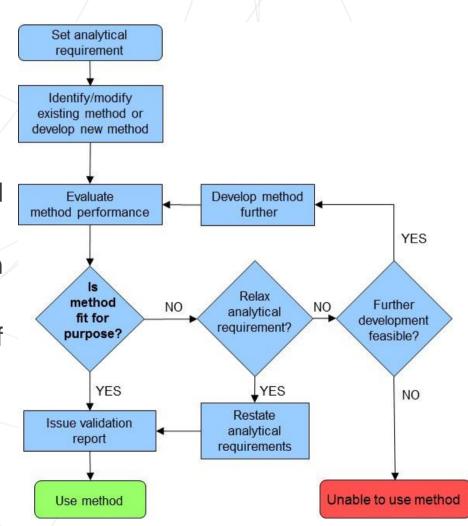
		Ту		
	Parameter	Qualitative	Major component	Trace analysis
	Selectivity	+	+	+
/	Precision		+	+
	Trueness		+	+
/	LOD	+		+
	LOQ			+
	Measuring interval		+	+
	Ruggedness	+	+	+

. . .

Palacký University Olomouc

Validation Guidance

- Eurachem Guide: The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics, (2nd ed. 2014). ISBN 978-91-87461-59-0. www.eurachem.org
- Filed specific guidance:
 - Ex: ICH Q2(R1) Validation of Analytical Procedures: Text and Methodology


The Fitness for Purpose of Analytical Methods

Second Edition 2014

Eurachem "Validation Guide"

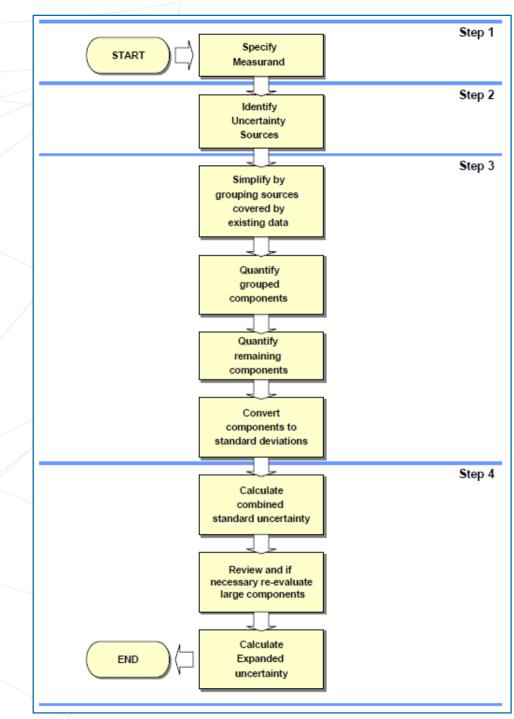
- The 2nd edition includes guidance on:
 - The concept of method validation;
 - The background and rationale for method validation;
 - How a method validation study should be performed and how much should be done (validation/verification);
 - A thorough explanation of the various validation parameters (performance characteristics);
 - Follow-up on the validation study (reporting, use of performance data in Internal Quality Control);
 - Documentation of analytical methods.

Measurement Uncertainty

Measurement Uncertainty (Entry 2.26): <u>Non-negative parameter</u> characterizing the dispersion of the quantity values being attributed to a measurand, <u>based on the information used</u>.

VIM3: JCGM 200:2008; International vocabulary of metrology — Basic and general concepts and associated terms (VIM) (2008).

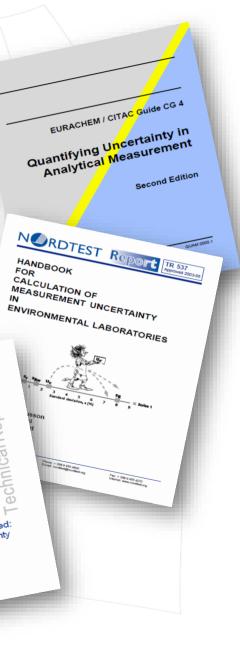
Uncertainty Estimation Process


Standard uncertainty u_x

- Find uncertainty for each component
- Type A: from the statistical distribution
- Type B: other information

Combined standard uncertainty u_c(y)

- Law of propagation of uncertainty (GUM)
- Modifications: Kragten approach, ...
- Monte-Carlo simulation


- Expanded uncertainty U

MU Guidance

- EURACHEM / CITAC Guide CG 4; Quantifying Uncertainty in Analytical Measurement; 3rd Ed (2012): <u>www.eurachem.org</u>;
- Nortdtest TR537; Handbook for Calculation of Measurement Uncertainty in Environmental Laboratories; 3rd Ed (2012): www.nordtest.info;
- Technical Report No. 1/2007; Measurement uncertainty revisited: Alternative approaches to uncertainty evaluation (2007): www.eurolab.org. Measurement uncertainty revisited Alternative approaches to uncertainty

evaluation

Elemental Impurities in pharmaceuticals

New "legislation"

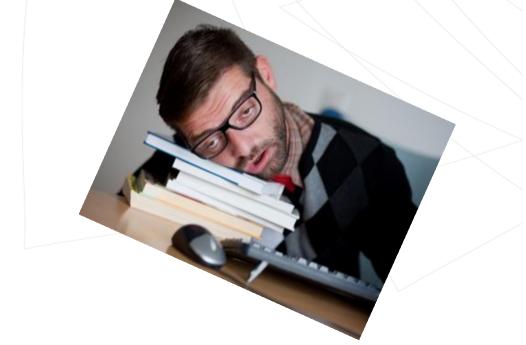
US Pharmacopeia

- Chapter <232> ELEMENTAL IMPURITIES LIMITS
 - Specifies limits for the amounts of elemental impurities in drug products.
 - A risk based strategy when analysts determine how to assure compliance with the standard.
- Chapter <233> ELEMENTAL IMPURITIES PROCEDURES
 - Procedures: ICP-OES, ICP-MS
 - Alternative procedures must be validated and show to be acceptable.

ICH (International Conference on Harmonization ...)

- ICH Q3D ELEMENTAL IMPURITIES – Guidance for Industry

10	сн	n for bett	er health		ICH	Q30): Gu	ideli	ne f	or El	eme	ntal	Imp	uriti	es		
H H H Loi G 222	•				ed I ts b												He He
3 11 1.546.00 5.54 5.1.0	Be Beyfican 9.01 5.1.5		Cla	65 1 55 2 A								5 B Beron 10.81 5 20	6 Carbon 1200 5 2 6	7 Naragan 14.01 G 1.1	8 Onypm 15.99 G 1.1	9 F Buarine 19 G 40	19 Ne Nam 2018
11 Na Sodur 22.99 S 0.9	24.31 5 1.2		and the second second	es 3		_						13 Al Auminum 25.98 5.15	14 Si Silcon 21.09 5 1.9	15 P Parpheru 30.97 5-22	16 S 945 3207 5 26	17 Cl Chlorine 35.45 0.3.2	18 Ar Argan 3935 G
19 K Potamin 39.1 5.0 8	20 Ca CAtion 40.08 5 10	21 Sc Sondian 4.36	12 Titanian 47.53	23 V Veration 50.94	24 Cr Ch	25 Mn Magazine 54.94	26 Fe hun 55.85	27 Co Coltain SL93 S	N 7.3.8	D Cu Cope	30 Zn Znc 63.39	M Gallian 69.72 5 1.6	32 Ge Gettarian 72.61 5 1.9	33 As Armic 14.92 5 20	34 58 51 11 11 11	35 Br 199	36 Kr Rryptan B.1 G
37 Rb Rubsdau 15-47 5-01	\$7.62 5.10	39 Y Verian 55.91	20 Zr 91.22	41 Nb Noteum 92:91	42 Mo Mo 90.94	D Te Technolium [99] 5	44 Ru 301.07	45 Rh Shudhan, 102.95	Pdiatres 106-0	Ag	Cd Cd 112.41 S	49 In hofium 114.82 5 17	50 Sn 111.71 5.1.8	51 Sb Automaty 121.75 S 21	52 Te Teluium 127.6 5 2.3	53 I lodar 126.9 5 2.7	54 Xe Xmm 131.29 G
5 0.7		57 La Lathaon 138.91 S	72 Hf Bahium 172-49 5	73 Ta Tanalum 180.95	V W Tangten 183.85	75 Re Rhesium 186.21	76 Ostoren 190.1	FT International 19222	PR PARA	79 Au 196.57	80 Hg Mercary 200.39	BI Thailines 204.58	S LA	83 Bi Birmath 201.98 5 1.9	84 Po Polonium [209] 5 2 0	85 At Atzine [710] 5 22	Sé Rn Radm [22] G
87 Fr Francius (223) S 0.7	Radus [26]	89 Ac Annun (227) S	104 Rf [251]	105 Db Dotman [262] g	106 Sg Setorgun [20]	197 Bh Dolman [262]	108 Hs [205]	109 Mit [256] 50	110	111	112 [277]	113	114	115	116	117	118


Decock G.: Eurofins Pharma Presentation 17/11/2015

Good Manufacturing Practice (GMP, GLP)

SÚKL

- General management documentation
- Standard operation procedures (SOP)
- Written instructions for everything
- Daily control of all equipment in the lab

STÁTNÍ ÚSTAV PRO KONTROLU LÉČIV Šrobárova 48 100 41 Praha 10

sukls152628/2014

Telefon: +420 272 185 111 Fax: +420 271 732 377 E-mail: posta@sukl.cz Web: www.sukl.cz

Certifikát spisová zn.: / Certificate Ref. No.:

CERTIFIKÁT SVP PRO VÝROBCE Část 1

Vydaný po inspekci v souladu s článkem 111(5) Směrnice 2001/83/ES a s §13, odst. 2, písm. a bod 3 zákona č. 378/2007 Sb., o léčivech a o změnách některých souvisejících zákonů (zákon o léčivech), ve znění pozdějších předpisů.

Příslušný orgán České republiky potvrzuje následující:

Kontrolní laboratoř: Univerzita Palackého v Olomouci Křížkovského 511/8 771 47 Olomouc

Adresa místa kontroly jakosti: Univerzita Palackého v Olomouci Přírodovědecká fakulta, Katedra analytické chemie, budova

CERTIFICATE OF GMP COMPLIANCE OF A MANUFACTURER Part 1

Issued following an inspection in accordance with Art. 111(5) of Directive 2001/83/EC and Section 13, paragraph 2, letter a, point 3 of the Act No 378/2007 Coll., on Pharmaceuticals and on Amendments to Some Related Acts (the Act on Pharmaceuticals), as amended.

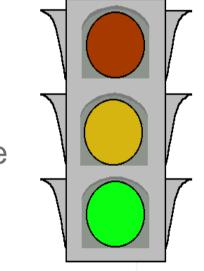
The competent authority of the Czech Republic confirms the following:

The control laboratory: Univerzita Palackého v Olomouci Křížkovského 511/8 771 47 Olomouc

Site address: Univerzita Palackého v Olomouci Přírodovědecká fakulta, Katedra analytické chemie, budova

Elemental impurities

- Sample preparation:
 - Closed vessel digestion: MW with mixture of acids (HNO₃, HCl, HClO₄, H₂O₂)
- ICP-MS determination (quad, collision cell)
- Risk assessment on 3 batches for each API:
 - Blanks \Rightarrow LOD, LOQ
 - Precision repeatability conditions
 - Accuracy recovery
 - Linearity
 - Screening of elemental impurities in APIs / final products.



Metrological Traceability

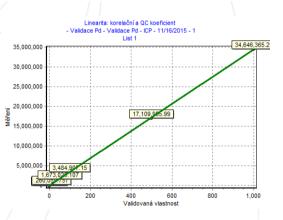
- Demonstration of traceability in our lab:
 - CRM solutions for calibration certificate of the CRM;
 - Expiration (shelf life)
 - Mass of a sample calibration certificate of the balance;
 - Volume of volumetric flasks calibration certificate of the manufacturer;
 - Microwave digestion unit regular service protocol;
 - ICP-MS regular service & qualification (IQ/OQ) protocols;
 - Performance check on daily basis

Method Validation

- Every procedure used under GMP shall be validated!
 - We have a SOP dealing with validation & acceptance criteria.
 - It is based on ICH Q2(R1) Validation of Analytical Procedures: Text and Methodology.
 - More rigorous approach parameters, minimum of repeated measurements.

			1 //
Type of analytical procedure	IDENTIFICATION	TESTING FOR IMPURITIES	ASSAY dissolution (measurement only) content/potency
characteristics		quantitat. limit	contents potency
Accuracy	-	+ -	+
Precision			
Repeatability	-	+ -	+
Interm.Precision	-	+ (1) -	+ (1)
Specificity (2)	+	+ +	+
Detection Limit	-	- (3) +	-
Quantitation Limit	-	+ -	-
Linearity	-	+ -	+
Range	-	+ -	+

Přírodovědecká fakulta



R-lab

VAZ-AS-001 Počet příloh: 5

Validační zpráva

Stanovení paladia jako nečistoty v aktivních farmaceutických substancích, meziproduktech a výchozích surovinách pomocí ICP-MS

Tab. 6: Přesnost - naměřená data

/	Měření	Spike 50 (µg/l)	Spike 500 (µg/l)	Spike 800 (µg/l)
	1	51,20485347	508,7766914	811,9588187
	2	53,01429983	525,2848819	836,6723320
	3	54,37651572	527,7519614	836,8858552
	4	54,08283967	539,0854652	847,8081330
	5	56,76445689	518,6073688	838,9528434
	6	59,18893703	539,6886986	851,0177846

Method Validation

- PROCEDURE:

- 1. Validation protocol: validation experiments, acceptance criteria
- 2. Perform validation experiments
- 3. Validation report: evaluation, compliance with criteria

Characteristic	Acceptance criteria	Experimental data
Linearity	R ≥ 0.99	R = 0.9998
Range	LOQ – 1000 µg.L ⁻¹	1.17 – 1000 μg.L ⁻¹
LOD	≤ 0.6 µg.L ⁻¹	0.57 µg/L (n = 10)
LOQ	≤ 1.8 µg.L ⁻¹	1.17 μg/L (n = 10)
Accuracy (recovery)	70 – 150 %	104.7 – 109.5 % (3 levels)
Precision (repeatability)	RSD < 20 %	< 5.2 % (n = 6)
Intermediate precision	RSD <25 %	< 7.9 (n = 2×6)
Specifity	recovery 70 – 150 %	92.9 – 115.3 % (¹⁰⁵ Pd, ¹⁰⁸ Pd)
Robustness	recovery 70 – 150 %	107.7 – 119.2 % (modifications in procedure)

Ex: top down approach (MU)

- Trace metal analysis in coffee by AAS and ICP-MS:

- Microwave digestion of roasted coffee beans $(HNO_3 + H_2O_2)$
- CRM NSC ZC 73014 Tea
- validation and subsequently MU evaluation

$$u_{c}(y) = \sqrt{S_{RW}^{2} + u_{bias}^{2}} \qquad u_{bias} = \sqrt{\Delta^{2} + u_{ref}^{2}}$$
$$U = 2 \times u_{c}(y)$$

	Relative uncertainty (%)						
	ICP-MS	AAS					
Ca	6.22	7.20					
Cu	6.87	11.37					
Fe	7.91	24.78					
Mg	5.51	8.73					
Zn	6.11	10.03					
Cd	17.01	25.67					
Cr	13.82	33.70					
Mn	6.28	13.15					
Ni	15.64	28.50					
Pb	16.53	34.07					

Measurand

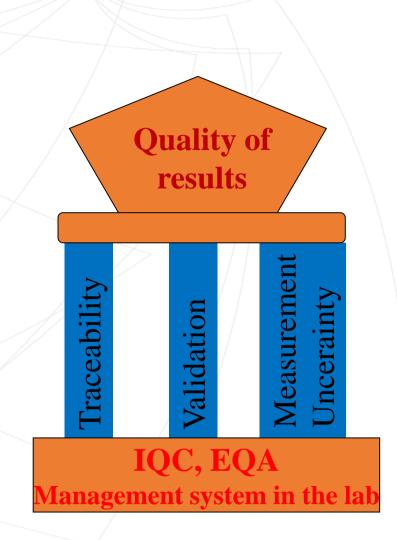
The chrono(logical) relation between concepts

Metrological Traceability

Method Validation

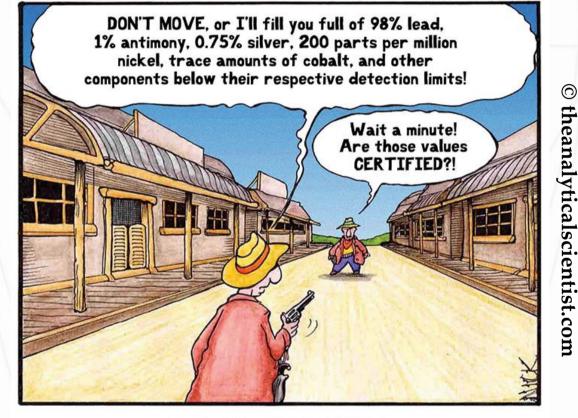
Measurement Uncertainty

Paul De Bièvre: ACQUAL (2010).



Conclusions

- 3 pillars are necessary for quality of results
- Mainly in development of a new method


- What does a foundation stone mean?

- Internal quality control (IQC)
- External quality assessment (EQA)
- Management system in the lab

Acknowledgment

Analytical Chemists in the Wild West

Thank You for Your kind attention!

Financial support: Ministry of Education, youth and Sports (LTV 17015)