

Fake Data – Rationale, Detection and Implications

Alessandra Rachetti & Wolfhard Wegscheider

Fraudulent "Fake" Data - Facts

- About 2 % of reseachers have admitted to faking data at least once in their careers.
- Blurred boundaries between innocent error, misunderstandings, avoidable faults, intentional "bending" and massive falsification.
- Fraud implies intention to cheat.

Research Misconduct Official Definition

"fabrication, falsification or plagiarism (FFP) in proposing, performing or reviewing research or in reporting research results"

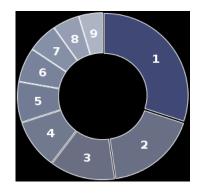
US office of Science and Technology Policy (OSTP)

Fake Data - Characteristics

- Falsified, manipulated data: observations that do not fit the desired results are deleted or amended and the variability as a whole is reduced.
- Fabricated, invented data: very little variation, total absence of outliers, and because of human intervention, a pattern of digit preference. Invented distributions tend to be flat, evenly spread over a limited range.

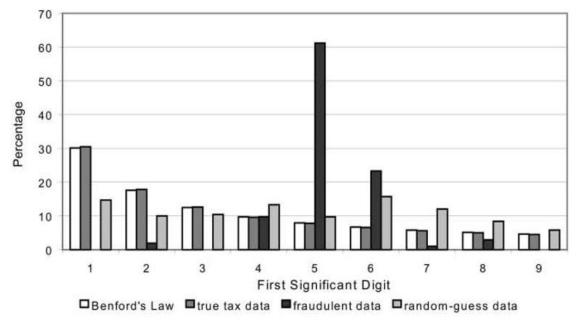
Fake Data - Objective

- Falsification / Bending / Data manipulation: to achieve a desired result or increase the statistical significance of the findings and affect the overall scientific conclusions, to achieve publication, or to produce results confirming a particular theory.
- The object of most falsifications is to demonstrate a "statistically significant" effect that the genuine data would not show.


Fake Data - Objective

- Fabrication / Invention of data for non-existent or incomplete cases (in clinical studies, market research), usually for financial gain.
- The most serious cases of fraud are those in which there is an expectation of gain in terms of prestige, advancement, or money.
- Almost never occurs in fields like physics, astronomy and geology.
 David Goldstein, 2005

Statistical Methods for Detecting Fake Data


- Look at digit distribution and preferences
- Look at variances, standard deviations, percentile ranges, range, kurtosis
- Multivariate associations Look for relationships that should exist

Digit Preference – First Digit Benford's Law

- Runs against intuition
- mainly for counting and measurement data
- not for assigned data or numbers influenced by human thought

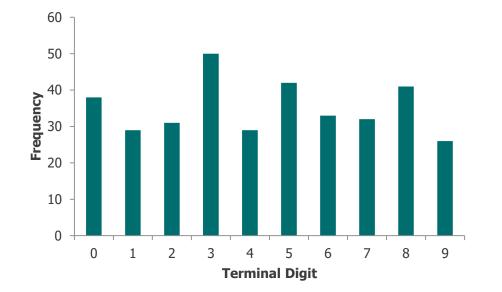
Benford's Law -Examples

from Theodore P. Hill, 1998

Digit Preference – Terminal Digit

- Terminal Digits are supposed to be uniformly distributed as they are expected to contain mostly random measurenment error.
- Humans instinctively do exhibit digit preferences
- Well suited for graphic methods of detection, Histogram, Stem & Leaf plot

Digit Preference – Stem and Leaf Plot


- 14 : 2
- 14 : 555
- 14 : 67777
- 14 : 889
- 15 : 000000111111

- 16 : 666666666667777777
- 16 : 88888899999999
- 17 : 00000000000111
- 17 : 333
- 17 : 4
- 17 : 67
- 17 : 88

heights of 351 (elderly) women.

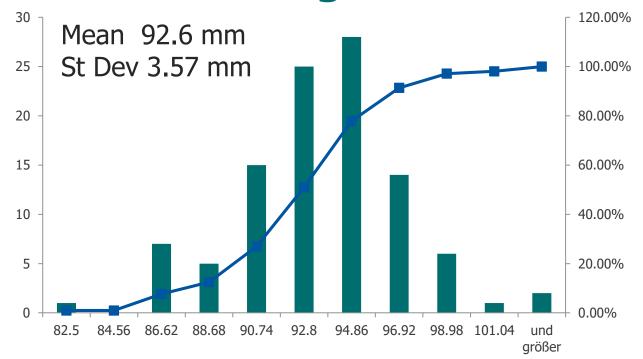
Data source: http://what-when-how.com/statistics/skewness-to-systematic-reviewstatistics/

Digit Preference – Histogram

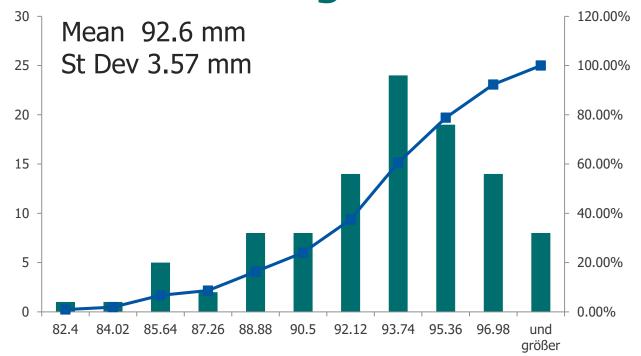
heights of 351 elderly women.

Fake Data / Possum Example

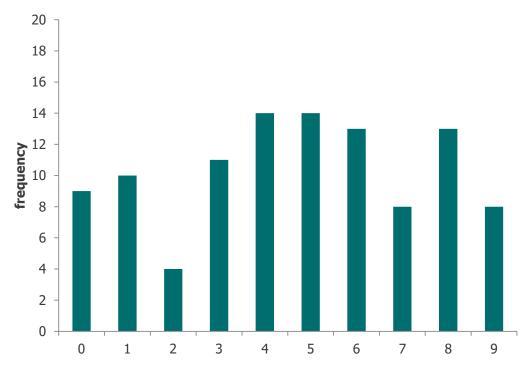
- 104 mountain brushtail possums
- 9 morphometric measurements
- Head length, skull width

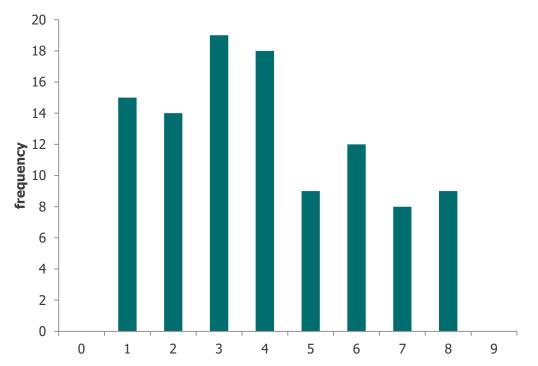


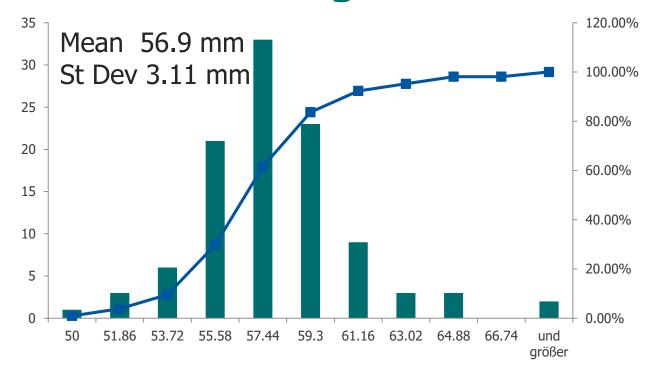
Picture source: http://www.environment.nsw.gov.au/topics/animals-and-plants/native-animals /native-animal-facts/brush-tailed-possum


Data source: Lindenmayer, D. B., Viggers, K. L., Cunningham, R. B., and Donnelly, C. F. 1995. Morphological variation among columns of the mountain brushtail possum, Trichosurus caninus Ogilby (Phalangeridae: Marsupiala). Australian Journal of Zoology 43: 449-458. https://vincentarelbundock.github.io/Rdatasets/datasets.html

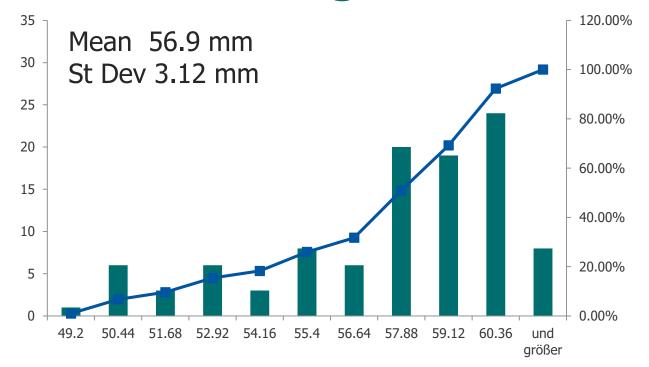
Eurachem Workshop Dublin May 2018


Possum head length / true data Histogram

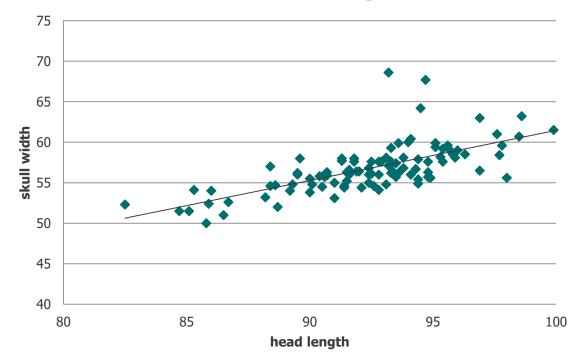

Possum head length / fake data Histogram


Possum head length / true data terminal digit distribution

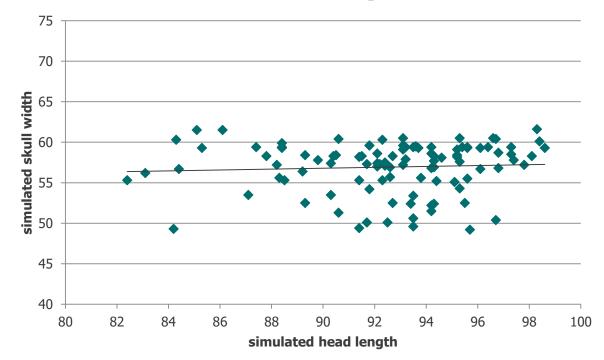
Possum head length / fake data terminal digit distribution



Possum skull width/ true data Histogram



Eurachem Workshop Dublin May 2018


Possum skull width/ fake data Histogram

True data: Possum skull width / head length

Fake data: Possum skull width / head length

Fake Data – Risk Factors

- Career pressure
- "Knowing the answer"
- Working in a small team
- Working in a field where individual experiments are not expected to be precisely reproducible

David Goldstein, 2005

Fake Data - What to do ?

Increase risk of exposure

- Peer review
- Full access to original data
- Public data repositories
- Better education of statisticians
- Devote a significant amount of research funds for replications
- Automated scanning of publications

Antonakis' 5 scientific diseases

- Significosis, an inordinate focus on statistically significant results
- **Neophilia**, an excessive appreciation for novelty
- **Theorrea**, a mania for new theory
- Arigorium, a deficiency of rigor in theoretical and empirical work
- Disjunctivitis, a proclivity to produce large quantities of redundant, trivial and incoherent works

"If you copy from one author, it's plagiarism, but if you copy from many, it's research."

Wilson Mizner

- Fanelli, D., How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data. Plos One 2009, 4, e5738.
- OSTP Federal Policy on Research Misconduct, cited from Martinson, B. C., Anderson, M. S., de Vries, R. (2005). Scientists behaving badly. Nature, 435, 737-738 doi:10.1038/435737a
- Fanelli, D. Redefine misconduct as distorted reporting (2013). Nature 494, 149. doi:10.1038/494149a
- Hill, T. P. (1998). The first digit phenomenon. *Amer. Scientist* 86:358–363.
- Goldstein, D. (2005). Conduct and Misconduct in Science. Retrieved from http://www.physics.ohio-state.edu/~wilkins/onepage/conduct.html
- Evans, S. (2001). Statistical aspects of the detection of fraud. In Lock, S., Wells, F., Farthing, M. (Eds), Fraud and Misconduct in Biomedical Research (186-203). London, England: BMJ Books,
- Antonakis, J. (2017). On doing better science: From thrill of discovery to policy implications. The Leadership Quarterly, 29, 5-21. http://dx.doi.org/10.1016/j.leaqua.2017.01.006