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Introduction @

» Existing approaches — a reminder
* A Bayesian approach to uncertainty evaluation

* Future guidance from JCGM




‘Law of propagation of uncertainty’ (LPU) @

* Current GUM approach
W)= (3 2 ey
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» Limitations
— Simple form assumes symmetry, small uncertainties,
approximate linearity
— Relies on simple form for y (must be differentiable)
— Extensions allow for for correlation, non-linearity etc

Monte Carlo simulation (MCS) @
X .
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Random draws
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u(y)

GUM Supplement 1

* Does not require differentiable form for y
Allows for asymmetry, non-linearity

* Does not cope with constraints on y
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Handling constraints on y:

Bayesian methods

Bayes Theorem @

* Probability after a measurement depends on
— The probability before the measurement
— The ‘strength’ of evidence from the measurement

P(M|A)

P(AIM) = P(A) OB




Bayes applied to Measurement Uncertainty @
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Bayesian estimate @
using Markov Chain MC
MCS (Supplement 1) Bayes/MCMC
* Samples from » Starts from assumed
distributions for input distribution for
quantities x + Produces samples which
+ Calculates y reflect ‘likelihood’ of y
given data x
* Generates a distribution
for the value of the * Always generates a
measurand if distribution for the value
— Distribution of x does not of the measurand
depend on y R

Depends somewhat on

— There are no prior choice of prior

constraints on y

Bayes and measurement uncertainty: Avoiding @
controversy

Rule 1: The default: Use an uninformative prior
— typically wide Normal or Uniform

Rule 2: The Bayes theorem is most
- Aff‘d s useful for uncontroversial,
Informa informative priors

Rule 3: If an uninformative prior works for measurement
uncertainty, there’s probably an easier way
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Bayes via Markov Chain Monte Carlo (MCM@

Simulate from
‘Proposal’ for u

“Filter” through
Likelihood
on previous Posterior
accepted point for u
) e

Base next point

MCMC example @

+ yis a concentration calculated from a signal minus a
blank value

Example data

° ° e o o Signal

e o o Blank
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Observed value

* True concentration cannot be below zero
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MCMC example - results

Il
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Unconstrained prior Constrained prior
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Estimate
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Estimate

Uniform priors assumed for y and for both variances; error distributions assumed

normal.

Calculations carried out using WinBUGS 1.4

MCMC example 2:
Dispersion proportional to u

Example data

-0.5 0.0 0.5 1.0

Observed value

Concentration: not below zero

Common observation: standard deviation
proportional to true value
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MCMC results:
i) Fixed standard deviation

u (fixed sigma)
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MCMC results
ii) Proportional standard deviation

u (proportional sigma)
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The case for Bayesian methods

» Bayesian methods cope correctly with
— Constraints on y
— Distributions dependent on true value

» Bayes’ theorem answers the right question

— MCS: “Where could my next result be, if my result is the true value?”

— Bayes: “Where could the true value be if this is my data?”

« BUT: Bayes is hard
— Much more difficult — specialist software only
— Choosing a ‘prior distribution’ is not simple
— Interpretation needs care

=

Future JCGM guidance
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Jcam 16

+ Joint Committee for Guides in Metrology
— Formed in 1997
* Members are international metrology and standards
bodies:
— BIPM, OIML, ISO, IEC, IUPAC, IUPAP, IFCC, ILAC*
* Responsible for guides on
— Measurement uncertainty (WG1)
— Terminology (the VIM) — WG2

*ILAC joined in 2005

Existing JCGM guidance on MU @

+ JCGM 100:2008 Guide to the expression of Uncertainty in
Measurement (“the GUM”)

+ JCGM 101:2008 Supplement 1 to the "Guide to the expression of
uncertainty in measurement" — Propagation of distributions using a
Monte Carlo method

+ JCGM 102:2011 Supplement 2 to the "Guide to the expression of
uncertainty in measurement" — Extension to any number of output
quantities

+ JCGM 104: An introduction to the "Guide to the expression of
uncertainty in measurement" and related documents

+ JCGM 106:2012 The role of measurement uncertainty in conformity
assessment
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Draft GUM replacement @

+ Bayesian basis
— Used Bayesian posterior mean and variance for input quantities
— LPU for small uncertainties
— MCS (Supplement 1) for non-linear cases etc

Issued for public comment in late 2014
Substantial adverse comment from member bodies
* Development suspended

JCGM new direction @

[ Guide to the expression of uncertainty in measurement |
Single title for complete suite
New introduction Moo
o ' JCGM 104:2009
guiding choice

Monte Carlo | | Multivariate Conformity Modelling LPUina
method measurements it s
JCGM 101:2008 JCGM 102:2011 JCGM 106:2012 JCGM 103:201x

Current GUM Interlaboratory

JCGM 100:2008

JCGM 110 framework

JCGM 111 Joem g CIPM Key
= IR  comparisons
Current

G U M Concepts and Least squares

X principles methods
retained

Separate
examples

Bayesian
methods
JCGM 108

JCGM 105 JCGM 107

Formal Bayesian
treatment
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Summary @

+ JCGM see Bayesian reasoning as fundamental

+ Existing guidance can be seen as special cases
— GUM: Small uncertainties; Near normality; No ‘prior’ information
— MCS: Non-normal distributions; No ‘prior’ information

* Future JCGM guidance is ‘modular’
— Different treatments for different circumstances
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