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Introduction

• Existing approaches – a reminder

• A Bayesian approach to uncertainty evaluation

• Future guidance from JCGM
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‘Law of propagation of uncertainty’ (LPU)

• Current GUM approach

• Limitations

– Simple form assumes symmetry, small uncertainties, 

approximate linearity

– Relies on simple form for y (must be differentiable)

– Extensions allow for for correlation, non-linearity etc

( ) ( )∑ 








∂
∂

=
i

i

i

i xu
x

y
yu

2

2

Monte Carlo simulation (MCS)

• GUM Supplement 1

• Does not require differentiable form for y

• Allows for asymmetry, non-linearity

• Does not cope with constraints on y

Random draws 

from p(xi)

xi xj xk
++

y

u(y)
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Handling constraints on y:

Bayesian methods

Bayes Theorem

• Probability after a measurement depends on

– The probability before the measurement

– The ‘strength’ of evidence from the measurement
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Bayes applied to Measurement Uncertainty

Prior for

µ

Likelihood

from x

+

Posterior

for µ

Bayes applied to Measurement Uncertainty

Prior for

µ

Likelihood

from x

+

Posterior

for µ

i) The mean

shifts

ii) The distribution

differs
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Bayesian estimate

using Markov Chain MC

MCS (Supplement 1)

• Samples from 

distributions for input 

quantities x

• Calculates y

• Generates a distribution 

for the value of the 

measurand if

– Distribution of x does not 

depend on y

– There are no prior 

constraints on y

Bayes/MCMC

• Starts from assumed 

distribution for µ
• Produces samples which 

reflect ‘likelihood’ of y

given data x

• Always generates a

distribution for the value 

of the measurand

• Depends somewhat on 

choice of prior

Bayes and measurement uncertainty: Avoiding 

controversy

Rule 1: The default: Use an uninformative prior

– typically wide Normal or Uniform

Rule 2: There are no truly uninformative priors

– And some ‘uninformative’ priors can be unexpectedly 

informative

Rule 3: If an uninformative prior works for measurement 

uncertainty, there’s probably an easier way

Bayes theorem is most 

useful for uncontroversial,

informative priors
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Bayes via Markov Chain Monte Carlo (MCMC)

“Filter” through

Likelihood

Posterior

for µ

Simulate from 

‘Proposal’ for µ

Base next point 

on previous 

accepted point 

MCMC example

• y is a concentration calculated from a signal minus a 

blank value

• True concentration cannot be below zero

3.0 3.5 4.0 4.5

Example data

Observed value

Blank

Signal
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MCMC example - results

Constrained prior
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Unconstrained prior
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Uniform priors assumed for y and for both variances; error distributions assumed 

normal. 

Calculations carried out using WinBUGS 1.4

MCMC example 2: 

Dispersion proportional to µµµµ

• Concentration: not below zero

• Common observation: standard deviation 

proportional to true value

-0.5 0.0 0.5 1.0 1.5

Example data

Observed value
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µ (fixed sigma)

x

D
e

n
s
it
y

-0.5 0.0 0.5 1.0 1.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

MCMC results: 

i) Fixed standard deviation

µ (proportional sigma)
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σ ∝ µ

MCMC results

ii) Proportional standard deviation
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The case for Bayesian methods

• Bayesian methods cope correctly with 

– Constraints on y

– Distributions dependent on true value

• Bayes’ theorem answers the right question

– MCS: “Where could my next result be, if my result is the true value?”

– Bayes: “Where could the true value be if this is my data?”

• BUT: Bayes is hard

– Much more difficult – specialist software only

– Choosing a ‘prior distribution’ is not simple

– Interpretation needs care

18

Future JCGM guidance
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JCGM

• Joint Committee for Guides in Metrology

– Formed in 1997

• Members are international metrology and standards 

bodies:

– BIPM, OIML, ISO, IEC, IUPAC, IUPAP, IFCC, ILAC*

• Responsible for guides on

– Measurement uncertainty (WG1)

– Terminology (the VIM) – WG2

*ILAC joined in 2005

Existing JCGM guidance on MU

• JCGM 100:2008 Guide to the expression of Uncertainty in 

Measurement (“the GUM”)

• JCGM 101:2008 Supplement 1 to the "Guide to the expression of 

uncertainty in measurement" – Propagation of distributions using a 

Monte Carlo method

• JCGM 102:2011 Supplement 2 to the "Guide to the expression of 

uncertainty in measurement" – Extension to any number of output 

quantities

• JCGM 104: An introduction to the "Guide to the expression of 

uncertainty in measurement" and related documents

• JCGM 106:2012 The role of measurement uncertainty in conformity 

assessment
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Draft GUM replacement

• Bayesian basis

– Used Bayesian posterior mean and variance for input quantities

– LPU for small uncertainties

– MCS (Supplement 1) for non-linear cases etc

• Issued for public comment in late 2014

• Substantial adverse comment from member bodies

• Development suspended

JCGM new direction

Single title for complete suite

New introduction

guiding choice

Current 

GUM 

retained

Separate 

examples

“New” GUM 

included as 

option

Formal Bayesian 

treatment

CIPM Key 

comparisons
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Summary

• JCGM see Bayesian reasoning as fundamental

• Existing guidance can be seen as special cases

– GUM: Small uncertainties; Near normality; No ‘prior’ information

– MCS: Non-normal distributions; No ‘prior’ information

• Future JCGM guidance is ‘modular’

– Different treatments for different circumstances


