EURACHEM/CITAC
Guidance on Metrological Traceability

Alex Williams
Chairman EURACHEM/CITAC Measurement Uncertainty & Traceability Working Group

Traceability is easy
All results are traceable
To what is the issue!
Principles of measurement

Unknown \rightarrow Method of Comparison \rightarrow Standard \rightarrow Result

Let me show you!
Obtaining a traceable measurement

- Value of the result for an unknown is obtained from a comparison with the value of a calibration standard e.g. measurement of mass
- Uncertainty of the result is the uncertainty of this comparison plus the uncertainty of the standard
- Value of the result is traceable to the value of the calibration standard provided the method used for the comparison is valid and its uncertainty is known
- The value of the standard used must be traceable to agreed (international) standards allows results to be comparable across space and time

\[
\begin{align*}
\text{Result } y_1 &= f_1(x_1) \\
\text{Result } y_2 &= f_2(x_2)
\end{align*}
\]

Relationship between \(y_1 \) and \(y_2 \)?
Validated Method

Traceability established for each parameter in the method

By calibration with appropriate standards.
\[y = f(x_1, x_2 \ldots x_m) \mid x_{m+p}, x_{m+2} \ldots x_n \]

- The sole requirement for \(y \) to be fully traceable* is that \(x_1,\ldots x_n \) are traceable or defined values
- Calibration of \(x_1,\ldots x_n \) with appropriate standards is sufficient

*other than MU requirements

What is an appropriate standard?

Suitable unit preferably SI

Suitable uncertainty
Degree of control - 3 categories

- **Green category:** very small effect on the uncertainty, minimal degree of control required.
 Normal, **routine laboratory equipment**, reagents, etc able to provide appropriate references.
 - volume (beaker/measuring cylinder), time (wall clock), length (ruler), concentration (approx. 6 mol L\(^{-1}\) HCl), temperature (room temperature)

- **Amber Category:** significant effect on the uncertainty, significant degree of control.

 Provided by **appropriately maintained and calibrated equipment** for common measurements (mass, volume, instrument response, etc). QA system of a properly equipped and appointed laboratory should provide appropriate references.
 - volumetric flask, analytical balance, common chemical reagents of specified concentration/purity (conc. nitric acid, acetonitrile HPLC grade)
Red category: also a significant degree of control, but analyst required to select the 'special' references needed to carry out a particular SOP.

- Materials with specified values (concentration/purity) used for instrument calibration, matrix reference materials used for QC, physical properties (molecular masses), individually calibrated glassware.

\[y = f(x_1, x_2, \ldots, x_m) \mid x_{m+1}, x_{m+2}, \ldots, x_n \]

- The sole requirement for \(y \) to be fully traceable* is that \(x_1, \ldots, x_n \) are traceable or defined values.

- Calibration of \(x_1, \ldots, x_n \) with appropriate standards is sufficient.

*other than MU requirements
Example

Meeting the traceability requirements of ISO 17025: An analyst's guide (third edition)

http://www.nmschembio.org.uk

Determination of potassium iodide in vitamin tablets

Outline of Method

Weigh the ground sample into a crucible
Add ≈7 g potassium carbonate, mix, cover with further ≈10 g
Place in a muffle furnace at 675 C to 700 C for 25 minutes
Cool, add ≈ 20 mL of water, heat to boiling, filter into a flask
Make the volume to ≈ 200 mL
Add 7 mL bromine water to convert to potassium iodate
Add 2 mL phosphoric acid to remove excess bromine
Add 5 mL 16% w/v KI solution to yield iodine
Titrate with 0.01 mol L⁻¹ sodium thiosulfate
Write down and understand the equation used to calculate the analytical result

\[
\text{KI (µg/tablet)} = \frac{(T-B) \times A \times M \times \text{MW}_{\text{KI}} \times 10^6}{6 \times 1000 \times W}
\]

- T: Titre (mL)
- B: Blank titre (mL)
- A: Mean weight of one tablet (g) (mean of 20 tablets)
- \(\text{MW}_{\text{KI}}\): Relative molecular mass of KI
- W: Weight of sample used (g)
- M: Molarity of sodium thiosulfate determined by standardisation against potassium iodate (mol L\(^{-1}\)):

\[
M = \frac{\text{mass of KIO}_3 \times \text{Purity of KIO}_3 \times 1000 \times 6}{\text{MW}_{\text{KIO}_3} \times \text{volume of Na}_2\text{S}_2\text{O}_3}
\]

\(\text{MW}_{\text{KIO}_3}\): Relative molecular mass of KIO\(_3\)

Obtain suitable traceable references for each of these.

Target uncertainty is 4 %
Therefore uncertainty on each these references < 1 %

Start with the very simple but necessary ones
These should be provided by laboratory QA system
Titre

Approximately 10 mL volume

Readily provided by class A burette with 0.05 mL graduations

Mass

Mass of 1 tablet approximately 1 g

4-figure analytical balance

Molecular masses

Obtainable from up-to-date tables with an uncertainty of < 0.1%
Molarity of the sodium thiosulphate

Commercially produced volumetric standard solution. For example, a 0.1 mol dm⁻³ sodium thiosulphate solution, with a tolerance factor of ±0.001 mol dm⁻³ (i.e. ±1%) readily available.

Alternatively, the molarity of the sodium thiosulphate solution could be established experimentally by standardisation against potassium iodate. Analytical grade potassium iodate -> 99.9% purity more than adequate.

In certain critical applications (e.g. where an analysis may be part of a legal dispute), the use of a CRM might be preferable, since there is less scope for criticism of a result.

Required degree of control for values in equation

- T: sample titre (mL)
- B: blank titre (mL)
- A: mean weight of one tablet (g)
- W: weight of sample used (g)
- MIO₃⁻: relative molecular mass of KIO₃
- MW₂S₄O₇: relative molecular mass of K₂S₂O₇
- M: molarity of K₂S₂O₇
- w: mass of KIO₃ (g)
- purity of KIO₃
- volume of sodium thiosulphate (mL)

All values in equations are in either the amber or red category.
Required degree of control for equipment

- Fused silica crucibles, 50 mL capacity, 57 mm diameter
- Filter papers, Whatman No. 541, 18.5 mm diameter
- Oven temperature

Summary (1)

- Write down the equations used to calculate the analytical result
- Identify any ‘reagents’ or equipment with specified values
- Identify the fixed conditions used in the method
- Obtain appropriate ‘stated references’ to which the above values may be related or traced
- An appropriate reference has a stated value in the required unit with acceptable uncertainty
Summary (2)

- Traceability to appropriate 'stated references' provides the uncertainty’ that is required when the SOP is carried out.
- The required uncertainty is that which is fit for purpose.
 - The smallest possible uncertainty is not always necessary, and consequently the highest level stated reference is not always necessary.

More details and Examples

Meeting the traceability requirements of ISO 17025: An analyst’s guide (third edition)

http://www.nmschembio.org.uk