



# **Forensic PT**

# The ENFSI Proficiency Testing Programme on Identification of GSR by SEM/EDX

Ludwig Niewöhner Forensic Science Institute Bundeskriminalamt, Germany





# AGENDA

- What are Gunshot Residues (GSR)
- PT Design / Sample Production
- Data Evaluation
- Inter Laboratory Applications
  - Proficiency Testing / Method Validation
- In Laboratory Applications
  - QA / System Validation
- Outlook / Future Applications





# **Sampling of GSR**







### **Detection of GSR by SEM/EDX**



- Automated particle search by using compositional contrast (BSE), imaging, acquisition of EDX-spectrum
- classification of particles according to their chemical composition
- manual verification of GSR indicative particles (EDXspectrum & morphology)





### **Detection of GSR by SEM/EDX**



- Automated particle search by using compositional contrast (BSE), imaging, acquisition of EDX-spectrum
- classification of particles according to their chemical composition
- manual verification of GSR indicative particles (EDXspectrum & morphology)





#### **Ternary Diagram**







#### **Problems in Automated Particle Analysis**

#### Automated SEM/EDX systems for particle detection

Is there a need for a standard?

system checking for:

- reproducibility
- reliability





#### **System Validation**

#### **Question: Will all particles be detected?**



**Conclusions:** 

 $\Rightarrow$  **5 measurements necessary** (with a stat. certainty of 95%)

#### SYSTEMATIC ERRORS





### **Demands on a particle standard**

A sample with:

- known number of GSR particles
- known chemical compositions
- known particle sizes
- known location of the particles

Preparing an "artificial" GSR sample

→ Silicon chip





#### Sample design



- 1/2 " stub

- 8x8mm Si chip
- 0.5 µm: 22 particles
- 0.8 µm: 25 particles
- 1.2 µm: 26 particles
- 2.4 µm: 27 particles

O 10 µm: 3 particles

- unique sample ID

patent no: DE 199 32 357 C2





### **Sample production**



- 4" wafer
- 8x8 mm<sup>2</sup> chips
- unique sample ID





#### **Sample production**



# Synthetic GSR-particle before Lift-Off-Process

#### Mounting of chip on SEM-stub







#### **Sample production**









# Application of the synthetic particle standard in PT

- Important features of the GSRstandard as a PT material:
  - Defined number, size, position of the particles
  - Defined chemical composition
  - High sample stability
  - Can be examined in the same way as samples form real cases.







# **History of the GSR PT Programme**

- 1995 ENFSI: first discussions within the EWG "Firearms"
- 1996 first study ("collaborative exercise")
- 1999 "proficiency test" GSR1999 (study)
  - → first attempt with synthetic GSR, PbSb-particles
- 2001 1<sup>st</sup> proficiency test GSR2001
  - ➔ PbSbBa-particles
- 2003 "GSR2003"; Final Meeting in Bad Camberg, Germany
- 2005 "GSR2005"; Final Meeting in Copenhagen; Denmark
- 2008 "GSR2008"; Final Meeting in Dubrovnik, Croatia





#### **Data evaluation**

- Export of particle coordinates to Excel<sup>®</sup> (PbBaSb, PbBa, PbSb, BaSb)
- Comparison with sample layout (Master)
  - 1. Manually by printout of Excel<sup>®</sup> data (XY-plot) and comparison with template (e.g. overhead transparency)
  - 2. By transformation of the particle coordinates into the sample template in Excel®
- In both cases the 10 µm particles are used as a landmark
- Checking-off of the detected particles regarding the different size categories





#### **Data evaluation**



| Labib: #117 |     |     |      |      |      |             |                 |                 |  |
|-------------|-----|-----|------|------|------|-------------|-----------------|-----------------|--|
|             |     |     | PbBa | PbSb | BaSb | ECD<br>(µm) | Stage X<br>(mm) | Stage Y<br>(mm) |  |
|             |     |     | 0    | 0    | 0    | 0.6         | 61.413          | 44.445          |  |
|             |     |     | - O  | 0    | 0    | 0.7         | 58,769          | 47.438          |  |
|             |     |     | - 0  | 0    | 0    | 0.9         | 58.653          | 44.891          |  |
|             |     |     | 0    | 0    | 0    | 0.9         | 61.555          | 46.582          |  |
| SPS-5P-24 # |     | - 0 | 0    | 0    | 0.9  | 58.250      | 48.721          |                 |  |
| 61          | 103 |     | - 0  | 0    | 0    | 0.9         | 60.874          | 45.484          |  |
| 0 10        |     |     | - 0  | 0    | 0    | 1.0         | 60.029          | 43.922          |  |
| D 0.5       |     |     | - 0  | 0    | 0    | 1.0         | 61.995          | 44.075          |  |
| 0.0         |     |     | - 0  | 0    | 0    | 1.0         | 59.233          | 46.111          |  |
| ● 2.4       |     |     | - C  | 0    | 0    | 1.0         | 59.791          | 47.164          |  |
|             |     |     | - 0  | 0    | 0    | 1.1         | 60.582          | 47.324          |  |
|             |     |     | - 0  | 0    | 0    | 1.1         | 60.303          | 47.609          |  |
|             |     |     | - O  | 0    | 0    | 1.1         | 62.058          | 43.142          |  |
|             |     |     | - 0  | 0    | 0    | 1.2         | 60.957          | 43.213          |  |
|             |     |     | 0    | 0    | 0    | 1.2         | 58.436          | 44.037          |  |
|             |     |     | 0    | 0    | 0    | 1.2         | 58.316          | 48.599          |  |
|             |     |     | - 0  | 0    | 0    | 1.2         | 61.082          | 43.516          |  |
|             |     |     | - O  | 0    | 0    | 1.3         | 58.884          | 43.716          |  |
|             |     |     | - 0  | 0    | 0    | 1.3         | 60.089          | 43.091          |  |
|             |     |     | - 0  | 0    | 0    | 1.4         | 61.554          | 42.968          |  |
|             |     |     | - C  | 0    | 0    | 1.4         | 57.665          | 45.394          |  |
|             |     |     | - O  | 0    | 0    | 1.4         | 60.601          | 47.707          |  |
|             |     |     | - 0  | 0    | 0    | 1.5         | 59.095          | 48.662          |  |
|             |     |     | - C  | 0    | 0    | 1.5         | 58.253          | 43.175          |  |
|             |     |     | - 0  | 0    | 0    | 1.5         | 59.559          | 44.803          |  |
|             |     |     | 0    | 0    | 0    | 1.6         | 59.741          | 45.643          |  |
|             |     |     | 0    | 0    | 0    | 1.6         | 59.890          | 47.427          |  |
|             |     |     | 0    | 0    | 0    | 1.7         | 58.853          | 44.382          |  |
|             |     |     | 0    | 0    | 0    | 1.7         | 59.341          | 45.670          |  |

0

0

1.7

59.856

Lob ID: #117

81

#### EURACHEM2008 - Rome, Oct. 08

44.897





#### **Manual evaluation**



 $\square$ 





#### **Evaluation in Excel**



| <ul> <li>submitted data</li> </ul> |  |  |  |  |  |
|------------------------------------|--|--|--|--|--|
| □ 10 µm                            |  |  |  |  |  |
| □2,4 µm                            |  |  |  |  |  |
| □ 1,2 µm                           |  |  |  |  |  |
| _ 0,8 µm                           |  |  |  |  |  |
| □ 0,5 µm                           |  |  |  |  |  |
| ⊖ PbSb                             |  |  |  |  |  |





# **Inter-laboratory application**

Samle material for proficiency testing

- laboratory assessment
- method assessment

(e.g. particle size; detection capability)





# **ASCLD-LAB** approval



Guidelines for the Requirements for the Competence of Providers of Proficiency Testing Schemes

#### ILAC-Guide G13-2000 ISO 5725 1 - 4 ISO Guide 43-1







# **GSR Proficiency Test**

**GSR** Proficiency Testing Programme

- within ENFSI (European Network of Forensic Science Institutes)
- granted by EU (OISIN, AGIS program)
- GSR1999, GSR2001, GSR2003, GSR2003, GSR2005, GSR2008
- all results on www.guodata.de
- published in JFS (vol. 53-1: 2008)





#### Enclosure to the certificate of participation in the interlaboratory test GSR2005

#### for the laboratory

#### Lab Code: 117

| We Let four Du                                       |                 |          |
|------------------------------------------------------|-----------------|----------|
|                                                      |                 |          |
| Navigation                                           | GSR 2005 Archiv |          |
| Home                                                 | 3,5             | _        |
| Software                                             |                 |          |
| Dangerous Goods                                      | ×               |          |
| Forensics<br>GSR 2005LArchiv                         | 2,5             | • •      |
| FAID 2005 Archiv                                     | A               |          |
| <ul> <li>GSR 2003/01 Archiv</li> <li>Food</li> </ul> | 1,5             | •        |
| Marine Environment                                   |                 |          |
| Test Systems                                         | 0,5             | •        |
| Statistics<br>Seminars and Workshops                 |                 | *        |
| Company                                              |                 |          |
|                                                      | -0,5            | •        |
|                                                      |                 |          |
|                                                      | -1,5            | <b>_</b> |
|                                                      |                 |          |
|                                                      | -2,5            | •        |
|                                                      |                 | •        |
|                                                      |                 |          |

-4,5 +

-20,5

-19,5

-18,5

-17,5

www.quodata.de

| Description                                   | True<br>Value | Assigned<br>Value* | Lab<br>result** | s.d.<br>used | Z - Score |
|-----------------------------------------------|---------------|--------------------|-----------------|--------------|-----------|
| Count of 0.5µm particles correctly detected   | 14            | 13                 | 7               | 1,3          | -4,6      |
| Count of 0.8µm particles correctly detected   | 30            | 29                 | 24              | 2,9          | -1,7      |
| Count of 1.2µm particles correctly detected   | 32            | 31                 | 31              | 3,0          | 0,0       |
| Count of 2.4µm particles correctly detected   | 24            | 23                 | 23              | 1,1          | 0,0       |
| Count of particles >=0.8µm correctly detected | 86            | 85                 | 78              | 6,7          | -1,0      |
| Count of particles >=1.2µm correctly detected | 56            | 55                 | 54              | 3,1          | -0,3      |

\*) In order to keep the conditions equal for all participants, a defect of one particle at the most over all size classes per test sample was allowed.

") If the lab result equals the true number of particles, it is set to the assigned value (true value - 1), in order to avoid inconsistent Z scores

#### Detection capability versus particle size

50% - Percentile: m<sub>50</sub> = 0.5 μm; 90% - Percentile: m<sub>90</sub> = 1.0 μm; steepness: s = -4







**Reports** 







#### **Z-score Assessment**

#### Z-scores

- According to "Internat. Harmon. Protocol for Proficiency Testing of (Chemical) Analytical Laboratories"
- Determination of mean value (M) and standard deviation (S)
- Assessment of the individual success rate by "Z-scores"

(ISO Guide 43-2; EURACHEM; ILAC-Guide G13)





#### **Reports**







#### **Detection Capability**







#### **Laboratory Assessment**













### **Method Improvement**







# **In-laboratory application**

#### For system validation / verification

- optimisation of measurement parameters
- notification of potential systematic errors
- avoidance of unnoticed, slightly drifting parameters
- use as a standard in QA/QM
  - regular system check, documentation
  - system check after installation/upgrade/repair





#### **Recognition of potential errors**

- incorrect stiching of fields (mechan. / electr.)
  - field overlap
  - spacing
  - WD correction



- scan hysterethis correction (TV/point mode)
- insufficient BSE-detection/settings (brightness, contrast)
- insufficient SEM/EDX settings
  - minimum particle size, magnification, field sizes
  - EDX-calibration (GSR standard)
- instable system parameters (drift of focus, current, etc)





### System Validation (III) FEI Quanta / Oxford INCA



#### FEI Quanta / Oxford INCA





# Outlook

#### GSR particle standard

- produced and distributed by PLANO GmbH

#### future applications

- steel industry
- MLA
- asbestos fibres













3

0

 $\bigcirc$ 

 $\mathbf{O}$