Uncertainty from sampling soil: an empirical approach

Dr Katy Boon
University of Sussex

k.a.boon@sussex.ac.uk

Presentation outline

- Uncertainty associated with the measurement of contamination in soil including sampling.
- The empirical approach to the estimation of sampling uncertainty
 - the Duplicate Method
- Case Study: demonstration of the Duplicate Method for the estimation of sampling uncertainty (Guide Example A2)
- Discussion
- Conclusions
Uncertainty in sampling in soil: where from?

<table>
<thead>
<tr>
<th>Sampling</th>
<th>Sample Preparation</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>• the sampling protocol selected and its</td>
<td>• Drying</td>
<td>• in-lab sub-sampling</td>
</tr>
<tr>
<td>implementation.</td>
<td>• Storage</td>
<td>• sample effects (e.g.</td>
</tr>
<tr>
<td>• the sampler</td>
<td>• Grinding of the</td>
<td>matrix effects)</td>
</tr>
<tr>
<td>• the sampling device</td>
<td>sample</td>
<td>• environmental</td>
</tr>
<tr>
<td>• cross-contamination</td>
<td>• Mixing of the sample</td>
<td>conditions</td>
</tr>
<tr>
<td>• small-scale</td>
<td>• Dividing the sample</td>
<td>• storage duration and</td>
</tr>
<tr>
<td>heterogeneity</td>
<td></td>
<td>conditions,</td>
</tr>
<tr>
<td>• sample handling</td>
<td></td>
<td>• instrument effects</td>
</tr>
<tr>
<td>• the environmental</td>
<td></td>
<td>• calibration error,</td>
</tr>
<tr>
<td>conditions</td>
<td></td>
<td>operator effects</td>
</tr>
<tr>
<td>• Drying</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Grinding of the sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Mixing of the sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Dividing the sample</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Why measure it?**
 - The use of concentration measurements:
 - comparison to regulatory thresholds
 - as the basis for reliable risk assessment
 - At majority of sites it is the sampling that is the dominant source of uncertainty
 - Important to quantifying the sampling uncertainty → confidence in the decisions made based on measurements taken
The estimation of uncertainty: an empirical approach

- Determines directly the combined contribution to the uncertainty of the result
 - from all the sources of uncertainty
 - using method performance data from in-house or inter-organisational measurement trials.
- Looks at the scatter of replicated measurements
- Can then be broken down into contributions from components such as sampling and analysis (if required).
- Includes both systematic and random components ('precision of a method').

The 4 empirical methods for the estimation of measurement uncertainty

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Number of samplers</th>
<th>Number of protocols</th>
<th>Components estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Duplicate samples</td>
<td>1</td>
<td>1</td>
<td>CRM</td>
</tr>
<tr>
<td>2</td>
<td>Different protocols</td>
<td>1</td>
<td>Multiple</td>
<td>Between protocols</td>
</tr>
<tr>
<td>3</td>
<td>Collaborative Trial in sampling (CTS)</td>
<td>Multiple</td>
<td>1</td>
<td>Between samplers</td>
</tr>
<tr>
<td>4</td>
<td>Sampling Proficiency Test (SPT)</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Between protocols and between samplers</td>
</tr>
</tbody>
</table>
The estimation of uncertainty: The Duplicate Method

- Random component
 - estimated from the precision of methods (sampling and analytical)
 - using the Duplicate Method and ANOVA or the range method (Example A3 in the guide)
 - both sampling and analytical uncertainty components.

- Systematic component
 - estimated from the bias of a method
 - use of CRMs to estimate the analytical uncertainty
 - only possible to estimate the sampling bias if have a Reference Sampling Target (RST) or by carrying out a CTS or SPT

The Duplicate Method: for the estimation of sampling uncertainty

- Define your sampling target and sampling protocol

- The duplicate method: using a balanced design …
 - Take a sample at the nominal sampling target.
 - Take a second sample displaced from the original to reflect the ambiguity in the sampling protocol
 - Carry out duplicate analyses on both the sample duplicates

- Repeat at 10 % of targets (n ≥ 8)
The Duplicate Method: why \(n \geq 8 \)?

- \(n < 8 \) uncertainty of the uncertainty estimate is considered unacceptable.
- Above 3 the confidence interval on the uncertainty does improve (i.e. reduce) as the number of duplicates increases but to a progressively smaller extent \(\geq 8 \).

\[
\begin{array}{c|c}
\text{Number of duplicate samples} & \text{Uncertainty from sampling (in mg kg}^{-1}\text{)} \\
0 & 100 \\
2 & 1000 \\
4 & 10000 \\
6 & 10000 \\
8 & 10000 \\
10 & 10000 \\
12 & 10000 \\
14 & 10000 \\
16 & 10000 \\
18 & 10000 \\
\end{array}
\]

The duplicate method: examples of how to take the duplicate sample

- When the sampling target is a specified depth interval e.g. 0 – 0.5 m, 0.5 – 1 m etc. of a core taken using a window sampler
 - the original borehole is located (e.g. with GPS), excavated with the window sampler and the original primary sample taken at the specified depth interval
 - the duplicate sample is taken from the same nominal depth interval from a duplicate borehole displaced from the original by a distance representative of the distance that represents the uncertainty of locating the original sample location.
The duplicate method: examples of how to take the duplicate sample

• When the sampling target is the volume of soil excavated from a trial pit to represent a 0.5 m depth interval
 - if the original sample is taken from one side of pile then the duplicate sample should be taken from the other side of the pile.

• Another example is presented in the Case Study which is discussed later.

Analysis of Variance (ANOVA)

• ANOVA is used to estimate and separate the sampling and analytical components of measurement variance using the data produced by the Duplicate Method.

• Robust ANOVA (RANOVA) can be used accommodates up to 10% of population outliers.

• RANOVA can be carried out using ROBAN v1.01 based on AMC (1989) and Ramsey (1998).

• The Range method can also be used, an example is presented in the Guide (A3).
Case study: demonstration of the Duplicate Method for the estimation of sampling uncertainty

The scenario:
- A former landfill, in West London
- 9 hectare = 90,000 m²
- Potential housing development
- Key contaminant → Pb

The target:
- 30 m x 30 m area → depth of 0.15 m
- 100 sampling targets in total
 - A clear definition of the target is important

Case Study: the sampling protocol

- a regular sampling grid, d = 30 m → 100 sampling locations
- top soil samples (0 – 150 mm)
- 100 primary samples
 - each intended to represent the 30 m x 30 m target
- samples collected using a sampling auger
- survey laid out with measuring tape and compass
Case Study: the study design – duplicate method

- duplicate samples taken at 10 sampling locations (i.e. 10%) randomly selected.
- 3 m from the original in a random direction
- this aims to reflect
 - the ambiguity in the sampling protocol
 - the uncertainty in locating the sampling target (e.g. survey error)
 - the effect of small-scale heterogeneity on the measured concentration within the sampling target

Case Study: sample prep and analysis in the lab

- Laboratory sample
 - oven dried, disaggregated and sieved (<2 mm)
 - ground (<100 µm) and mixed
- Test sample
 - 0.25 g sub-sample taken
 - where duplicate samples take a second 0.25 g (analytical duplicates – balanced design)
- Test portion
 - dissolution with nitric and perchloric acids
- Test solution
 - ICP AES determination of Pb
Case Study:
Sample prep and analysis in the lab

- 6 soil CRMs were selected for analysis to assess the analytical bias over a range of concentrations
- Measurements subject to full AQC
- Corrected for reagent blank concentrations where statistically different to zero
- The raw measurements for use for the estimation of uncertainty were:
 - untruncated – e.g. 0.0124 mg/kg not < 0.1 mg/kg or < detection limit
 - unrounded – e.g. 2.64862 mg/kg not 3 mg/kg

Case Study:
The results

- Only 16/100 locations over UK SGV = 450 mg Pb/kg
- Mainly uncontaminated (84%)
Case Study: The results – from the balanced design

- Low level agreement between sample duplicates (e.g. D9) → high level of sampling uncertainty
- Agreement between analytical duplicates much better < 10% difference
- Robust ANOVA (Roban) selected to allow for the outlying values evident in this data.

<table>
<thead>
<tr>
<th>I.D.</th>
<th>S1A1 (mg kg⁻¹)</th>
<th>S1A2 (mg kg⁻¹)</th>
<th>S2A1 (mg kg⁻¹)</th>
<th>S2A2 (mg kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>787</td>
<td>769</td>
<td>811</td>
<td>780</td>
</tr>
<tr>
<td>B7</td>
<td>338</td>
<td>327</td>
<td>651</td>
<td>563</td>
</tr>
<tr>
<td>C1</td>
<td>289</td>
<td>297</td>
<td>211</td>
<td>204</td>
</tr>
<tr>
<td>D9</td>
<td>662</td>
<td>702</td>
<td>238</td>
<td>246</td>
</tr>
<tr>
<td>E8</td>
<td>229</td>
<td>215</td>
<td>208</td>
<td>218</td>
</tr>
<tr>
<td>F7</td>
<td>346</td>
<td>374</td>
<td>525</td>
<td>520</td>
</tr>
<tr>
<td>G7</td>
<td>324</td>
<td>321</td>
<td>77</td>
<td>73</td>
</tr>
<tr>
<td>H5</td>
<td>56</td>
<td>61</td>
<td>116</td>
<td>120</td>
</tr>
<tr>
<td>I9</td>
<td>189</td>
<td>189</td>
<td>176</td>
<td>168</td>
</tr>
<tr>
<td>J5</td>
<td>61</td>
<td>61</td>
<td>91</td>
<td>119</td>
</tr>
</tbody>
</table>

Case Study: Roban output

CLASSICAL ANOVA RESULTS
Mean = 317.79999
Standard Deviation (Total) = 240.19238
Sums of Squares = 1738031.9 370075.5 6473
Geochemical Sampling Analysis
Standard Deviation = 197.55196 135.43246 17.990274
Percentage Variance = 67.646327 31.792678 0.5609926

ROBUST ANOVA RESULTS:
Mean = 287.30884
Standard Deviation (Total) = 218.48763
Geochemical Sampling Analysis Measurement
Standard Deviation = 179.67409 123.81386 11.144044 124.31436
Percentage Variance = 67.62655 32.113293 32.373447
Relative Uncertainty (%) at 95% confidence = 83.289726 7.4966113 83.626415

Geochemical = between-target unit = mg kg⁻¹
Case study: The uncertainty estimates

- The estimates of the random component of the measurement uncertainty are averaged over the 10 targets (= 10 %, n ≥ 8)

- Assuming that the uncertainty is not varying significantly over this range of concentration

- Expressed in relative terms to be applicable to full range of values

Case study: Random component

\[s_{\text{samp}} = 123.8 \text{ mg kg}^{-1} \text{ and } s_{\text{anal}} = 11.1 \text{ mg kg}^{-1} \]

added together by their squares to give the random component of the combined standard deviation of measurements:

\[s_{\text{meas}} = \sqrt{(s_{\text{samp}}^2 + s_{\text{anal}}^2)} = 124.3 \text{ mg kg}^{-1} \]

multiplied by a coverage factor (k = 2 for 95% confidence) to estimate the random component of the standard uncertainty:

\[u = k.s_{\text{meas}} = 248.6 \text{ mg kg}^{-1} \text{ (for a single sample)} \]
Case study: Random component

This can also be expressed as a relative expanded uncertainty:

\[U'_{\text{meas}} = 200. \frac{s_{\text{meas}}}{x} = 83.63 \% \text{ (of the concentration values)} \approx 84 \% \]

For sampling alone:

\[U'_{\text{samp}} = 200. \frac{s_{\text{samp}}}{x} = 83.29 \% \text{ (of the concentration values)} \]

For analysis:

\[U'_{\text{anal}} = 200. \frac{s_{\text{anal}}}{x} = 7.47 \% \text{ (of the concentration values)} \]

Case Study: sources of uncertainty

- Proportion of U caused by sampling (123.8 mg kg\(^{-1}\))

\[
= 100 \times \frac{s^2_{\text{samp}}}{s^2_{\text{meas}}} = 100 \times \frac{123.8^2}{124.3^2} = 99.2\%
\]

Dominant source of uncertainty

- Proportion of U caused by analysis (11.1 mg kg\(^{-1}\))

\[
= 100 \times \frac{s^2_{\text{anal}}}{s^2_{\text{meas}}} = 100 \times \frac{11.14^2}{124.3^2} = 0.8\%
\]
Case Study: inclusion of analytical bias

- A linear functional relationship was fitted between the measured values and the certified values of the 6 CRMs using FREML to model the analytical bias:
 \[-3.41 \% \pm 1.34 \% \]

- The systematic component of the relative expanded uncertainty:
 \[U_{\text{systematic}}' = 2 \sqrt{(-3.41)^2 + 1.34^2} = 7.33 \% \]

- Currently no consensus on how to combine the systematic and random components of uncertainty, one method is to add them by the sum of their squares:
 \[U_{\text{total}}' = \sqrt{(U_{\text{random}}^2 + U_{\text{systematic}}^2)} = \sqrt{(83.63^2 + 7.33^2)} = 83.95 \% \approx 84 \% \]

Case Study: Probabilistic classification

- Should always report the uncertainty values with the analyte concentration value as it can alter the classification of the sampling location.

- Allows a probabilistic classification:

\[y = 0.96588x + 2.384 \]

\[\text{Error bars: } 1\sigma \]

\[0 \quad 1000 \quad 2000 \quad 3000 \quad 4000 \quad 5000 \]

\[0 \quad 2000 \quad 4000 \quad 6000 \]

\[\text{Certified Pb concentration (mg/kg)} \]

\[\text{Measured Pb concentration (mg/kg)} \]

\[\text{Rotational bias: } (0.9658 - 1) \times 100 = -3.41 \% \]
Uncertainty from Sampling Soil: an empirical approach
Sampling uncertainty and Uncertainty from compliance assessment Symposium, BAM, Berlin

Case Study:
Probabilistic classification

<table>
<thead>
<tr>
<th>Row</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>674</td>
<td>287</td>
<td>250</td>
<td>338</td>
<td>212</td>
<td>458</td>
<td>713</td>
<td>125</td>
<td>77</td>
<td>168</td>
</tr>
<tr>
<td>2</td>
<td>378</td>
<td>159</td>
<td>260</td>
<td>152</td>
<td>197</td>
<td>711</td>
<td>165</td>
<td>69</td>
<td>206</td>
<td>126</td>
</tr>
<tr>
<td>3</td>
<td>327</td>
<td>197</td>
<td>240</td>
<td>159</td>
<td>327</td>
<td>264</td>
<td>105</td>
<td>137</td>
<td>131</td>
<td>102</td>
</tr>
<tr>
<td>4</td>
<td>787</td>
<td>207</td>
<td>197</td>
<td>87</td>
<td>254</td>
<td>1840</td>
<td>78</td>
<td>102</td>
<td>71</td>
<td>107</td>
</tr>
<tr>
<td>5</td>
<td>365</td>
<td>165</td>
<td>188</td>
<td>344</td>
<td>314</td>
<td>302</td>
<td>284</td>
<td>89</td>
<td>87</td>
<td>83</td>
</tr>
<tr>
<td>6</td>
<td>453</td>
<td>371</td>
<td>155</td>
<td>463</td>
<td>258</td>
<td>245</td>
<td>237</td>
<td>173</td>
<td>152</td>
<td>83</td>
</tr>
<tr>
<td>7</td>
<td>72</td>
<td>418</td>
<td>194</td>
<td>83</td>
<td>162</td>
<td>441</td>
<td>199</td>
<td>326</td>
<td>290</td>
<td>164</td>
</tr>
<tr>
<td>8</td>
<td>71</td>
<td>101</td>
<td>108</td>
<td>521</td>
<td>218</td>
<td>327</td>
<td>546</td>
<td>132</td>
<td>258</td>
<td>246</td>
</tr>
<tr>
<td>9</td>
<td>72</td>
<td>188</td>
<td>104</td>
<td>463</td>
<td>462</td>
<td>228</td>
<td>135</td>
<td>285</td>
<td>181</td>
<td>146</td>
</tr>
<tr>
<td>10</td>
<td>69</td>
<td>366</td>
<td>495</td>
<td>779</td>
<td>60</td>
<td>206</td>
<td>56</td>
<td>135</td>
<td>137</td>
<td>149</td>
</tr>
</tbody>
</table>

41% of locations at least ‘possibly contaminated’

Discussion:
Sampling bias

- This estimate of sampling uncertainty (and measurement uncertainty) from the Duplicate Method does not take into account the sampling bias.

- But as it is the heterogeneity of the sampling target that is the dominant source of uncertainty, it is assumed that the contribution to the uncertainty of the sampling bias is inconsequential by comparison.

- Possible to include an estimate of the contribution from sampling bias, if use one of the methods involving multiple protocols or samplers (e.g. CTS and SPT)
Discussion:
U at duplicate locations

• At targets where duplicate samples have been taken the uncertainty on these locations is reduced as 4 measurements have been taken as part of the Duplicate Method and the mean of these measurements is used to represent the concentration at that location, i.e. a composite with an increased sample mass.

• The uncertainty at these locations can be estimated from:

\[
\frac{s_{\text{meas}}}{\sqrt{4}}
\]

• In the case study the uncertainty at the targets where duplicates were taken is: \(\frac{84}{\sqrt{4}} = 42\% \)

Discussion:
if the site mean is the measurand

• If the whole site is defined as the sampling target
 - and the measurand (or true value) had been defined as the mean concentration across the whole site

• The uncertainty estimate could consist of the standard error on the mean

• In this case study:
 - \(s_{\text{total}} = 403\, \text{mg kg}^{-1}, \bar{x} = 291.9, n = 100 \)
 - \(\text{sem} = \frac{s_{\text{total}}}{\sqrt{n}} = \frac{403}{\sqrt{100}} = 40.3\, \text{mg kg}^{-1} \)
 - the relative expanded uncertainty on the mean is:
 \(= \frac{200 \times \text{sem}}{\bar{x}} = \frac{200 	imes 40.3}{291.9} = 27.6\% \) of the mean value

• But …
 - ignored systematic effects (underestimates U)
 - don’t get the components
Conclusions

• Importance of estimating the measurement uncertainty and in particular including that from sampling.

• Clear definition of the target required.

• The simple application of the Duplicate Method for the estimation of the sampling uncertainty

• How the the duplicate samples are taken is important

• The usefulness of ROBAN and robust ANOVA as a tool for the estimation of measurement uncertainty and the separation of the sampling and analytical components for populations with < 10 % outliers.

84 % for single sample protocol

If 84 % not fit-for-purpose might need to reduce U_{meas} (Thompson and Fearn (1996) and Taylor et al (2002))

- FFP assessment showed that an optimal U_{meas} would be 28%, this would require a ~ 3 - fold reduction in the uncertainty.

- As sampling usually dominates U_{meas} it is possible to reduce the U_{meas} by increasing the sample mass by taking a composite sample.

 • An increase in sample mass of a factor of n would reduce the sampling uncertainty by a factor of \sqrt{n} (i.e. a 9-fold composite would in theory reduce the uncertainty by 3)

Estimates of U are not automatically applicable to other sites

- Need a QC approach over repeated sites
Conclusions

• This technique has also been shown to be applicable to:
 - other analytes
 - other media
 • food (Example A1 in the Uncertainty from Sampling Guide)
 • gas (Squire and Ramsey, 2001)
 • river sediment (Ramsey et al, 1992)
 - on site measurement techniques
 • current work on the increased acceptability of on-site measurement tools

References

Acknowledgements

Co-workers:
Prof Mike Ramsey, Dr Ariadni Argyraki

Funders:
UK – Technology Strategy Board, Department of Trade and Industry, Contaminated Land: Applications In Real Environments (CL:AIRE)