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Approaches to measurement
uncertainty evaluation

S L R Ellison
LGC Limited, Teddington, UK

Science

for a safer world

Introduction @

+ Basic principles — a reminder
Uncertainty from a measurement equation
Gradient methods
— Finite difference approach
— Kragten’s method
« Simulation methods
— Monte Carlo simulation (MCS)




Measurement uncertainty:
Basic principles

Measurement uncertainty - ISO definition

“A parameter, associated with the result of a

=

measurement, that characterises the dispersion of the

values that could reasonably be attributed to the
measurand”

The part of the result after the +
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ISO recommendations @

* Uncertainties arise from several contributions

« Two ways of evaluating uncertainty components
— statistical (Type A) and otherwise (Type B)
— should be treated in the same way

* Expression as standard deviations
. [Combination by “.. the usual method for the combination]

of variances.”
* Multiplied by a (stated) factor if required

Implementation - combining uncertainties @

“... the usual
method ...”

uZ +ul

uy
* The uncertainties are:
— Uncertainty contributions for the same quantity
— In the same units
— Expressed as ‘standard uncertainties’
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Expanded uncertainty U

u, ->68%

U= 2u;->95%

U=ku,

Uncertainties in different quantities:
“Propagation of uncertainty”




Example: The effect of temperature on
volume

Dispense 100ml

from a Calibrated volumetric flask (U = 0.2 ml, k=2)
allowing for random filling effects (s = 0.1 ml)

at a laboratory temperature 20 + 2 °C

« Estimate the uncertainty in dispensed volume at
20 °C

=

Example: The effect of temperature on
volume

Random
variation Calibration
(mL) (mL)
Volume
(mL)
* How does a
temperature
Temperature uncertainty apply?

(°C)

=
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Example: The effect of temperature on vqur@

Volume Gradient: V x o
u(V)—L coefficient of volume
expansion
o
Ll—l Temperature
u(T)

u(V) = gradient x u(T)

The ‘law of propagation of uncertainty’ @

° X parameter affecting analytical result y
* u(x;) uncertainty in x;
* ufy) uncertainty in y due to uncertainty in x;

2

w ()= |22 uler

T. .. Describes how much the
sensitivity result changes with
coefficient changes in input
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Why include numerical methods? @

« Simpler than algebra

* More general than algebraic differentiation
— Can obtain gradients when differentiation is intractable
» Result obtained from algorithm rather than equation
— May be applicable when simplifying assumptions do not apply
» Uncertainties large
e f(..) notlinear
* Distributions far from Normal




Finite difference - principle @
Measurement result y b

7 a 6,—0

T . gradient(b) —>

2 | gradient(a)

=
7
~

IT‘TI Input parameter x;

09,
Yy V.Y " Ve Y-
~ U, ~ ——u(x,
ox, 20, ) 26, ()
Compare finite difference with the @
GUM

GUM first order

Expression: a/(b - c)

Finite Difference
Expression: a/(b - c)

Uncertainty budget: Uncertainty budget:
X u c u.c X u c u.c
a 1 0.05 1 0.05 a 1 0.05 1.000000 0.0500000
b 3 015 -1 -0.15 b 3 0.15 -1.000002 -0.1500003
c 2 0.10 1 0.10 2 0.10 1.000001 0.1000001
y: 1

u(y): 0.1870832
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Kragten’s method

Measurement result y

Y+

]

u,(Y)=y, =¥,

Input parameter x;
dJ(x;)

Eurachem guide, sec E.2

Compare Kragten with FD
Finite Difference
Expression: a/(b - c)

Uncertainty budget:
X u c u.c

a 1 0.05 1.000000 0.0500000 a 1
b 3 0.15 -0.8695
c 2 0.0

b 3 0.15 -1.000002-0.1500003
c 2 0.10 1.000001 0.1000001

y: 1

u(y): 0.1870832 u(y):

Kragten
Expression: a/(b - c)

Uncertainty budget:

u Cc
0.05 1.0000

1.1111

1
0.1784906

=

u.c
0.05000
-0.13043
0.11111
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Exact vs. Numerical

y=allb-c)
‘Exact’ first order
Uncertainties: (GUM)
X u Finite difference
a 1 0.05 (0.01u)
b 3 015 Kragten
c 2 010

=

m Standard uncertainty

0.1870829
0.1870832

0.1784906

Why use a ‘less accurate’

method?

Finite difference Kragten
30 1
% = u(x;)
g g
10
Gradient=0
ufy) = Oxu(x) ufy) =
= 0 mg/kg o 7 mglkg

Detection wavelength (nm)

T T T
220 230 240 250 260 270

Detection wavelength (nm)
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Finite difference methods
compared

=

Finite difference 1t order  Kragten

Accurate gradient

Faithfully reproduces 1st order
GUM uncertainty

Simple to calculate

1st order GUM is insufficient for
highly non-linear cases
— Needs 2" and higher order

Exact only for linear examples

Does not reproduce 1st order
GUM

Simple to calculate

Usually adequate for mild
nonlinearity

May be better for highly non-
linear cases

Both much simpler than manual differentiation

Monte Carlo/simulation methods
GUM Supplement 1 (JCGM 101)
Eurachem guide: QUAM:2012
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Principle of simulation

i) The problem
Xj
AN

y = fx,

X

N

X

+

\‘8 ] >¢<

)l—y

b
u@y)
Principle of simulation @
Xi X X
O AGYACAN
Ly oL (0|
Random draws |Jl| |J]—¢ )—[h
from p(x;) |j_| |J:|_( }ﬂ_| = ) )
IR
u(y)
Estimated
distribution
fory
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MCS example
y = al(b-c) (999 replicates)
Histogram
8 _ —
< [3p)
o » o~
S 7 — 3
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S =
= o
I T 1

0.5 1.0 15 2.0

Values of y

Q-Q plot

.,

Sample Quantiles

Calculations carried out using metRology 0.9-24 (http://sourceforge.net/projects/metrology/)

Exact vs. Numerical

=

y=allb-c) | Method | Standard uncertainty
‘Exact’ first order 0.1870829
Uncertainties: (GUM)
X u Finite difference 0.1870832
a 1 0.05 (0.01u)
b 3 0.15 Kragten 0.1784906
c 2 010 MCS 0.221
y=0.718 to 1.535
-0.3; +0.5
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Summary @

*  Numerical methods work
— when used with care

» Finite difference and Kragten methods are simple to calculate
and usually reliable

— Kragten’s method less like 15t order — but this is often good!
» Simulation methods show distributions
— Applicable to non-normal cases
*+ MCS (JCGM 101) simple in principle but computer intensive

* Future guidance will include further methods
— Notably Bayesian approaches

Software @

+ Simple algebraic, Kragten, Finite Difference and MCS

— metRology version 0.9-4 running under R
htto.//sourceforge.net/projects/metrology
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