

Introduction

- Basic principles a reminder
- Uncertainty from a measurement equation
- Gradient methods
 - Finite difference approach
 - Kragten's method
- Simulation methods
 - Monte Carlo simulation (MCS)

Measurement uncertainty - ISO definition

"A parameter, associated with the result of a measurement, that characterises the dispersion of the values that could reasonably be attributed to the measurand"

The part of the result after the ±

ISO recommendations

- Uncertainties arise from several contributions
- Two ways of evaluating uncertainty components
 - statistical (Type A) and otherwise (Type B)
 - should be treated in the same way
- Expression as standard deviations
- Combination by ".. the usual method for the combination of variances."
- Multiplied by a (stated) factor if required

Implementation - combining uncertainties

- The uncertainties are:
 - Uncertainty contributions for the same quantity
 - In the same units
 - Expressed as 'standard uncertainties'

Example: The effect of temperature on volume

Dispense 100ml from a Calibrated volumetric flask (U = 0.2 ml, k=2) allowing for random filling effects (s = 0.1 ml) at a laboratory temperature 20 \pm 2 °C

 Estimate the uncertainty in dispensed volume at 20 °C

The 'law of propagation of uncertainty'

- x_i parameter affecting analytical result y
- $u(x_i)$ uncertainty in x_i
- $u_i(y)$ uncertainty in y due to uncertainty in x_i

$$u_i(y) = \sqrt{\sum_i \left(\frac{\partial y}{\partial x_i}\right)^2 u(x_i)^2}$$
sensitivity
coefficient
Describes how much the result changes with changes in input

Numerical methods for uncertainty propagation

Why include numerical methods?

- Simpler than algebra
- More general than algebraic differentiation
 - Can obtain gradients when differentiation is intractable
 - · Result obtained from algorithm rather than equation
 - May be applicable when simplifying assumptions do not apply
 - Uncertainties large
 - *f*(...) not linear
 - · Distributions far from Normal

y - ar(b - c)				
Uncertainties:				
	Χ	u		
а	1	0.05		
b	3	0.15		
С	2	0.10		

Method	Standard uncertainty
'Exact' first order (GUM)	0.1870829
Finite difference (0.01u)	0.18708 <u>32</u>
Kragten	0.1 <u>784906</u>

Finite difference methods compared

Finite difference 1st order

- · Accurate gradient
- Faithfully reproduces 1st order GUM uncertainty
- Simple to calculate
- 1st order GUM is insufficient for highly non-linear cases
 - Needs 2nd and higher order

Kragten

- Exact only for linear examples
- Does not reproduce 1st order GUM
- · Simple to calculate
- Usually adequate for mild nonlinearity
- May be better for highly nonlinear cases

Both much simpler than manual differentiation

LGC

Monte Carlo/simulation methods

GUM Supplement 1 (JCGM 101)

Eurachem guide: QUAM:2012

Summary

- · Numerical methods work
 - when used with care
- Finite difference and Kragten methods are simple to calculate and usually reliable
 - Kragten's method less like 1st order but this is often good!
- Simulation methods show distributions
 - Applicable to non-normal cases
- MCS (JCGM 101) simple in principle but computer intensive
- · Future guidance will include further methods
 - Notably Bayesian approaches

Software

- Simple algebraic, Kragten, Finite Difference and MCS
 - metRology version 0.9-4 running under R http://sourceforge.net/projects/metrology