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INTRODUCTION

Titrations are a group of techniques that have contributed considerably to the development of the chemical industry and to the development of the chemistry itself (1). Consultative Committee for
Amount of Substance (CCQM) has recognized titration as one of the primary methods for determining amount of substance (2), which has attracted many attention by National Metrology Institutes (3).
In several studies, the uncertainty estimation for acid-base titrations is carried out using Bottom Up approach, and it is recognized that the main sources of uncertainty comes from reference material
purity, instrument resolutions, calibration, repeatability, molecular weight of the species and amount of titrant. (4,5). However, Wamplfler and Rosslen found that in comparison with Top Down
Approach, the most of the studies underestimate the uncertainty up to 4 times. Some studies have shown that the detection of the end point is one of the main sources of error, so multiple strategies
have been designed to perform the detection of this point through derivatives, mathematical transformation, and even graphical methods. Based on this, we evaluated different measurement systems
for acid-base titrations in order to determine which have better metrological qualities (uncertainty and bias).
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